Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -68,9 +68,9 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
|
|
68 |
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) on
|
69 |
a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video of GPT-4</a>.
|
70 |
<ul style="list-style-type:square;">
|
71 |
-
<li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "
|
72 |
-
<li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "
|
73 |
-
<li>Experiment with different prompts, for example "
|
74 |
</ul>
|
75 |
In a production system, managing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
|
76 |
<a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
|
@@ -81,7 +81,7 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
|
|
81 |
|
82 |
gr.close_all()
|
83 |
demo = gr.Interface(fn=invoke,
|
84 |
-
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), gr.Textbox(label = "Prompt", value = "
|
85 |
outputs = [gr.Textbox(label = "Completion", lines = 1)],
|
86 |
title = "Generative AI - LLM & RAG",
|
87 |
description = description)
|
|
|
68 |
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) on
|
69 |
a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video of GPT-4</a>.
|
70 |
<ul style="list-style-type:square;">
|
71 |
+
<li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
|
72 |
+
<li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
|
73 |
+
<li>Experiment with different prompts, for example "explain gpt-4 in one sentence in german", "list pros and cons of gpt-4", or "generate a haiku about gpt-4".</li>
|
74 |
</ul>
|
75 |
In a production system, managing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
|
76 |
<a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
|
|
|
81 |
|
82 |
gr.close_all()
|
83 |
demo = gr.Interface(fn=invoke,
|
84 |
+
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), gr.Textbox(label = "Prompt", value = "explain gpt-4", lines = 1)],
|
85 |
outputs = [gr.Textbox(label = "Completion", lines = 1)],
|
86 |
title = "Generative AI - LLM & RAG",
|
87 |
description = description)
|