bstraehle commited on
Commit
7599d3e
·
1 Parent(s): 2f462f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -68,9 +68,9 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
68
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) on
69
  a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video of GPT-4</a>.
70
  <ul style="list-style-type:square;">
71
- <li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
72
- <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
73
- <li>Experiment with different prompts, for example "what is gpt-4 in one sentence, translate to german", "concerns about gpt-4", or "generate three haikus about gpt-4".</li>
74
  </ul>
75
  In a production system, managing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
76
  <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
@@ -81,7 +81,7 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
81
 
82
  gr.close_all()
83
  demo = gr.Interface(fn=invoke,
84
- inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), gr.Textbox(label = "Prompt", value = "what is gpt-4", lines = 1)],
85
  outputs = [gr.Textbox(label = "Completion", lines = 1)],
86
  title = "Generative AI - LLM & RAG",
87
  description = description)
 
68
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) on
69
  a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video of GPT-4</a>.
70
  <ul style="list-style-type:square;">
71
+ <li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
72
+ <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
73
+ <li>Experiment with different prompts, for example "explain gpt-4 in one sentence in german", "list pros and cons of gpt-4", or "generate a haiku about gpt-4".</li>
74
  </ul>
75
  In a production system, managing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
76
  <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
 
81
 
82
  gr.close_all()
83
  demo = gr.Interface(fn=invoke,
84
+ inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), gr.Textbox(label = "Prompt", value = "explain gpt-4", lines = 1)],
85
  outputs = [gr.Textbox(label = "Completion", lines = 1)],
86
  title = "Generative AI - LLM & RAG",
87
  description = description)