bstraehle commited on
Commit
a5cb1b3
·
1 Parent(s): 50ef0b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -50,19 +50,19 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
50
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
51
  (YouTube videos in this case, but it could be PDFs, URLs, or other structured/unstructured private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
- <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a YouTube video (semantic search, sentiment analysis, summarization, translation, etc.)
54
- The example is a short video about GPT-4.
55
  <ul style="list-style-type:square;">
56
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
57
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
58
  <li>Set "Process Video" to "False" and experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
59
  </ul>
60
- In a production system processing external data would be done in a batch process, while prompting is done in a user interaction.
61
- An idea for a production system would be to perform LLM use cases on the <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent</a> playlist.\n\n
62
- <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
63
- via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
64
- and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
65
- <a href='https://www.trychroma.com/'>Chroma</a> embedding database."""
66
 
67
  gr.close_all()
68
  demo = gr.Interface(fn=invoke,
 
50
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
51
  (YouTube videos in this case, but it could be PDFs, URLs, or other structured/unstructured private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
+ <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a YouTube video (semantic search, sentiment analysis, summarization,
54
+ translation, etc.) The example is a short video about GPT-4.
55
  <ul style="list-style-type:square;">
56
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
57
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
58
  <li>Set "Process Video" to "False" and experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
59
  </ul>
60
+ In a production system processing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
61
+ <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent</a> playlist.\n\n
62
+ <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
63
+ <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
64
+ <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>
65
+ embedding database."""
66
 
67
  gr.close_all()
68
  demo = gr.Interface(fn=invoke,