bstraehle commited on
Commit
c273c9f
·
1 Parent(s): c5fbf4f

Update rag_llamaindex.py

Browse files
Files changed (1) hide show
  1. rag_llamaindex.py +29 -23
rag_llamaindex.py CHANGED
@@ -49,17 +49,10 @@ class LlamaIndexRAG(BaseRAG):
49
 
50
  return docs
51
 
52
- def store_documents(self, config, docs):
53
- storage_context = StorageContext.from_defaults(
54
- vector_store = self.get_vector_store()
55
- )
56
-
57
- VectorStoreIndex.from_documents(
58
- chunk_overlap = config["chunk_overlap"],
59
- chunk_size = config["chunk_size"],
60
- documents = docs,
61
- #embedding = x,
62
- storage_context = storage_context
63
  )
64
 
65
  def get_vector_store(self):
@@ -69,29 +62,42 @@ class LlamaIndexRAG(BaseRAG):
69
  collection_name = self.MONGODB_COLLECTION_NAME,
70
  index_name = self.MONGODB_INDEX_NAME
71
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  def ingestion(self, config):
74
  docs = self.load_documents()
75
 
76
  self.store_documents(config, docs)
77
-
78
- def get_llm(self, config):
79
- return OpenAI(
80
- model = config["model_name"],
81
- temperature = config["temperature"]
82
- )
83
-
84
  def retrieval(self, config, prompt):
85
- service_context = ServiceContext.from_defaults(
86
- llm = self.get_llm(config)
87
- )
88
-
89
  index = VectorStoreIndex.from_vector_store(
90
  vector_store = self.get_vector_store()
91
  )
92
 
93
  query_engine = index.as_query_engine(
94
- service_context = service_context,
95
  similarity_top_k = config["k"]
96
  )
97
 
 
49
 
50
  return docs
51
 
52
+ def get_llm(self, config):
53
+ return OpenAI(
54
+ model = config["model_name"],
55
+ temperature = config["temperature"]
 
 
 
 
 
 
 
56
  )
57
 
58
  def get_vector_store(self):
 
62
  collection_name = self.MONGODB_COLLECTION_NAME,
63
  index_name = self.MONGODB_INDEX_NAME
64
  )
65
+
66
+ def get_service_context(config):
67
+ return ServiceContext.from_defaults(
68
+ chunk_overlap = config["chunk_overlap"],
69
+ chunk_size = config["chunk_size"],
70
+ llm = self.get_llm(config)
71
+ )
72
+
73
+ def get_storage_context():
74
+ return StorageContext.from_defaults(
75
+ vector_store = self.get_vector_store()
76
+ )
77
+
78
+ def store_documents(self, config, docs):
79
+ storage_context = StorageContext.from_defaults(
80
+ vector_store = self.get_vector_store()
81
+ )
82
+
83
+ VectorStoreIndex.from_documents(
84
+ docs,
85
+ service_context = self.get_service_context(config),
86
+ storage_context = self.get_storage_context()
87
+ )
88
 
89
  def ingestion(self, config):
90
  docs = self.load_documents()
91
 
92
  self.store_documents(config, docs)
93
+
 
 
 
 
 
 
94
  def retrieval(self, config, prompt):
 
 
 
 
95
  index = VectorStoreIndex.from_vector_store(
96
  vector_store = self.get_vector_store()
97
  )
98
 
99
  query_engine = index.as_query_engine(
100
+ service_context = self.get_service_context(config),
101
  similarity_top_k = config["k"]
102
  )
103