bstraehle commited on
Commit
c70420f
·
1 Parent(s): b1760e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -46,12 +46,12 @@ def invoke(openai_api_key, use_rag, prompt):
46
  temperature = 0)
47
  if (use_rag):
48
  # Document loading, splitting, and storage
49
- loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
50
- YOUTUBE_URL_02,
51
- YOUTUBE_URL_03,
52
- YOUTUBE_URL_04,
53
- YOUTUBE_URL_05,
54
- YOUTUBE_URL_06], YOUTUBE_DIR),
55
  OpenAIWhisperParser())
56
  docs = loader.load()
57
  text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
@@ -75,8 +75,8 @@ def invoke(openai_api_key, use_rag, prompt):
75
  return result
76
 
77
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
78
- (in this case YouTube videos about GPT-4, but it could be PDFs, URLs, or other <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
79
- <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.)
80
  <ul style="list-style-type:square;">
81
  <li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
82
  <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
 
46
  temperature = 0)
47
  if (use_rag):
48
  # Document loading, splitting, and storage
49
+ loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
50
+ YOUTUBE_URL_2,
51
+ YOUTUBE_URL_3,
52
+ YOUTUBE_URL_4,
53
+ YOUTUBE_URL_5,
54
+ YOUTUBE_URL_6], YOUTUBE_DIR),
55
  OpenAIWhisperParser())
56
  docs = loader.load()
57
  text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
 
75
  return result
76
 
77
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
78
+ (in this case YouTube videos, but it could be PDFs, URLs, or other <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
79
+ <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.) on YouTube videos about GPT-4.
80
  <ul style="list-style-type:square;">
81
  <li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "explain gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
82
  <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>