Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,119 +2,22 @@ import gradio as gr
|
|
2 |
import openai, os, time
|
3 |
|
4 |
from dotenv import load_dotenv, find_dotenv
|
5 |
-
from langchain.chains import LLMChain, RetrievalQA
|
6 |
-
from langchain.chat_models import ChatOpenAI
|
7 |
-
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
|
8 |
-
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
|
9 |
-
from langchain.document_loaders.generic import GenericLoader
|
10 |
-
from langchain.document_loaders.parsers import OpenAIWhisperParser
|
11 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
12 |
-
from langchain.prompts import PromptTemplate
|
13 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
-
from langchain.vectorstores import Chroma
|
15 |
-
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
16 |
-
from pymongo import MongoClient
|
17 |
|
18 |
from rag import llm_chain, rag_chain
|
19 |
from trace import wandb_trace
|
20 |
|
21 |
_ = load_dotenv(find_dotenv())
|
22 |
|
23 |
-
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
|
24 |
-
WEB_URL = "https://openai.com/research/gpt-4"
|
25 |
-
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
26 |
-
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
27 |
-
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
|
28 |
-
|
29 |
-
YOUTUBE_DIR = "/data/youtube"
|
30 |
-
CHROMA_DIR = "/data/chroma"
|
31 |
-
|
32 |
-
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
|
33 |
-
MONGODB_DB_NAME = "langchain_db"
|
34 |
-
MONGODB_COLLECTION_NAME = "gpt-4"
|
35 |
-
MONGODB_INDEX_NAME = "default"
|
36 |
-
|
37 |
-
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = os.environ["LLM_TEMPLATE"])
|
38 |
-
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = os.environ["RAG_TEMPLATE"])
|
39 |
-
|
40 |
RAG_OFF = "Off"
|
41 |
RAG_CHROMA = "Chroma"
|
42 |
RAG_MONGODB = "MongoDB"
|
43 |
|
44 |
-
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
|
45 |
-
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
|
46 |
-
|
47 |
config = {
|
48 |
"chunk_overlap": 150,
|
49 |
"chunk_size": 1500,
|
50 |
"k": 3,
|
51 |
-
"model_name": "gpt-4-0613",
|
52 |
-
"temperature": 0,
|
53 |
}
|
54 |
|
55 |
-
def document_loading_splitting():
|
56 |
-
# Document loading
|
57 |
-
docs = []
|
58 |
-
|
59 |
-
# Load PDF
|
60 |
-
loader = PyPDFLoader(PDF_URL)
|
61 |
-
docs.extend(loader.load())
|
62 |
-
|
63 |
-
# Load Web
|
64 |
-
loader = WebBaseLoader(WEB_URL)
|
65 |
-
docs.extend(loader.load())
|
66 |
-
|
67 |
-
# Load YouTube
|
68 |
-
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
|
69 |
-
YOUTUBE_URL_2,
|
70 |
-
YOUTUBE_URL_3], YOUTUBE_DIR),
|
71 |
-
OpenAIWhisperParser())
|
72 |
-
docs.extend(loader.load())
|
73 |
-
|
74 |
-
# Document splitting
|
75 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
|
76 |
-
chunk_size = config["chunk_size"])
|
77 |
-
split_documents = text_splitter.split_documents(docs)
|
78 |
-
|
79 |
-
return split_documents
|
80 |
-
|
81 |
-
def document_storage_chroma(documents):
|
82 |
-
Chroma.from_documents(documents = documents,
|
83 |
-
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
84 |
-
persist_directory = CHROMA_DIR)
|
85 |
-
|
86 |
-
def document_storage_mongodb(documents):
|
87 |
-
MongoDBAtlasVectorSearch.from_documents(documents = documents,
|
88 |
-
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
89 |
-
collection = collection,
|
90 |
-
index_name = MONGODB_INDEX_NAME)
|
91 |
-
|
92 |
-
def document_retrieval_chroma(llm, prompt):
|
93 |
-
return Chroma(embedding_function = OpenAIEmbeddings(),
|
94 |
-
persist_directory = CHROMA_DIR)
|
95 |
-
|
96 |
-
def document_retrieval_mongodb(llm, prompt):
|
97 |
-
return MongoDBAtlasVectorSearch.from_connection_string(MONGODB_ATLAS_CLUSTER_URI,
|
98 |
-
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
|
99 |
-
OpenAIEmbeddings(disallowed_special = ()),
|
100 |
-
index_name = MONGODB_INDEX_NAME)
|
101 |
-
|
102 |
-
def llm_chain(llm, prompt):
|
103 |
-
llm_chain = LLMChain(llm = llm,
|
104 |
-
prompt = LLM_CHAIN_PROMPT,
|
105 |
-
verbose = False)
|
106 |
-
completion = llm_chain.generate([{"question": prompt}])
|
107 |
-
return completion, llm_chain
|
108 |
-
|
109 |
-
def rag_chain(llm, prompt, db):
|
110 |
-
rag_chain = RetrievalQA.from_chain_type(llm,
|
111 |
-
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
112 |
-
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
|
113 |
-
return_source_documents = True,
|
114 |
-
verbose = False)
|
115 |
-
completion = rag_chain({"query": prompt})
|
116 |
-
return completion, rag_chain
|
117 |
-
|
118 |
def invoke(openai_api_key, rag_option, prompt):
|
119 |
if (openai_api_key == ""):
|
120 |
raise gr.Error("OpenAI API Key is required.")
|
|
|
2 |
import openai, os, time
|
3 |
|
4 |
from dotenv import load_dotenv, find_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
from rag import llm_chain, rag_chain
|
7 |
from trace import wandb_trace
|
8 |
|
9 |
_ = load_dotenv(find_dotenv())
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
RAG_OFF = "Off"
|
12 |
RAG_CHROMA = "Chroma"
|
13 |
RAG_MONGODB = "MongoDB"
|
14 |
|
|
|
|
|
|
|
15 |
config = {
|
16 |
"chunk_overlap": 150,
|
17 |
"chunk_size": 1500,
|
18 |
"k": 3,
|
|
|
|
|
19 |
}
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def invoke(openai_api_key, rag_option, prompt):
|
22 |
if (openai_api_key == ""):
|
23 |
raise gr.Error("OpenAI API Key is required.")
|