bstraehle commited on
Commit
d715a02
·
1 Parent(s): f4d1a92

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -134,10 +134,10 @@ def invoke(openai_api_key, rag_option, prompt):
134
  raise gr.Error(e)
135
  return result
136
 
137
- description = """<strong>Overview:</strong> Reasoning application that demonstrates a <strong>Large Language Model (LLM)</strong> with
138
- <strong>Retrieval Augmented Generation (RAG)</strong> on <strong>external data</strong>.\n\n
139
  <strong>Instructions:</strong> Enter an OpenAI API key and perform text generation use cases on <a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>,
140
- <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web</a> data published after LLM knowledge cutoff (example: GPT-4 data).
141
  <ul style="list-style-type:square;">
142
  <li>Set "Retrieval Augmented Generation" to "<strong>Off</strong>" and submit prompt "What is GPT-4?" The <strong>LLM without RAG</strong> does not know the answer.</li>
143
  <li>Set "Retrieval Augmented Generation" to "<strong>Chroma</strong>" or "<strong>MongoDB</strong>" and experiment with prompts. The <strong>LLM with RAG</strong> knows the answer:</li>
 
134
  raise gr.Error(e)
135
  return result
136
 
137
+ description = """<strong>Overview:</strong> Reasoning application that demonstrates a <strong>large language model (LLM)</strong> with
138
+ <strong>retrieval augmented generation (RAG)</strong> on <strong>external data</strong>.\n\n
139
  <strong>Instructions:</strong> Enter an OpenAI API key and perform text generation use cases on <a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>,
140
+ <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>web</a> data published after LLM knowledge cutoff (example: GPT-4 data).
141
  <ul style="list-style-type:square;">
142
  <li>Set "Retrieval Augmented Generation" to "<strong>Off</strong>" and submit prompt "What is GPT-4?" The <strong>LLM without RAG</strong> does not know the answer.</li>
143
  <li>Set "Retrieval Augmented Generation" to "<strong>Chroma</strong>" or "<strong>MongoDB</strong>" and experiment with prompts. The <strong>LLM with RAG</strong> knows the answer:</li>