File size: 1,131 Bytes
53d6474
eb09c16
 
cad1126
 
 
87bd002
1674572
acf5da7
87bd002
6f8418a
 
dfef0b8
87bd002
6f8418a
eb09c16
6f8418a
acf5da7
 
2471c01
6f8418a
87bd002
1674572
6f8418a
 
87bd002
89934b5
 
6f8418a
f718f04
89934b5
f718f04
2471c01
1674572
 
f718f04
 
 
89934b5
0930360
f718f04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme

theme = theme.Theme()

# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")

def predict_image(input_img):
    predictions = image_pipeline(input_img)
    return {p["label"]: p["score"] for p in predictions} 

image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Label(label="Result")],
    title="Green Greta",
    theme=theme
)

# Cell 2: Chatbot Model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

def echo(message, history):
    return message

chatbot_gradio_app = gr.ChatInterface(
    fn=echo,
    title="Greta",
    theme=theme
)

# Combine both interfaces into a single app
gr.TabbedInterface(
    [image_gradio_app, chatbot_gradio_app],
    tab_names=["Greta Image","Greta Chat"],
    theme=theme
).launch()