File size: 11,096 Bytes
5ffb1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a273c4d
5ffb1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a273c4d
5ffb1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import shutil
import sys
import numpy as np
# importing libraries 
import requests
import glob
import soundfile as sf
import speech_recognition as sr
from pydub import AudioSegment
import pydub
AudioSegment.converter = "/usr/bin/ffmpeg"
import io
from CaesarFolderInterface.caesarfolderinterface import CaesarFolderInterface
from CaesarMobileTranslate.caesarmobiletranslate import CaesarMobileTranslate
from CaesarMobileTTS.caesarmobiletts import CaesarMobileTTS
from tqdm import tqdm


def cosine_similarity(doc1,doc2):
    import spacy
    nlp = spacy.load("en_core_web_sm")
    doc1 = nlp(doc1)
    doc2 = nlp(doc2)
    similarity = np.dot(doc1.vector, doc2.vector) / (np.linalg.norm(doc1.vector) * np.linalg.norm(doc2.vector))
    return similarity
# create a speech recognition object
r = sr.Recognizer()

class CaesarMobileTranscribe(CaesarFolderInterface):
    def __init__(self) -> None:
        super().__init__()
        self.caesartrans = CaesarMobileTranslate()
        self.caesartts = CaesarMobileTTS()
    def create_all_dirs(self):
        if self.audio_input_folder not in os.listdir():
            os.mkdir(self.audio_input_folder)
        if self.notes_folder not in os.listdir():
            os.mkdir(self.notes_folder)
        if self.audio_output_folder not in os.listdir():
            os.mkdir(self.audio_output_folder)

        

        
    def store_audio(self,argfilename,contents,fileformat):
        try:
            recording = AudioSegment.from_file(io.BytesIO(contents)) # , format=fileformat
            recording.export(f'{self.audio_input_folder}/{argfilename}.wav', format='wav') 
            return True
        except Exception as ex:
            print(type(ex),ex)
            return False
        
        

    def send_revisionbank(self,sentences,txtfilename):
        boole = True
        while boole == True:
            sendrevisionbank = input("Send to RevisionBank: (y) or (n)").lower()
            if sendrevisionbank == "y":
                cardname = f'{txtfilename.split("/")[0]}/{txtfilename.split("/")[-1].replace(".txt","").capitalize()}'
                json = {"revisioncardscheduler":{"sendtoemail":"[email protected]","revisionscheduleinterval":60,"revisioncards":[{"subject":f"A-Level {cardname}","revisioncardtitle":cardname,"revisioncard":sentences}]}}
                loginjson = {"email":"[email protected]","password":"kya63amari"}
                try:
                    print("Logging in...")
                    access_token = requests.post("https://revisionbank.onrender.com/loginapi",json=loginjson).json()["access_token"]
                    headers = {"Authorization": f"Bearer {access_token}"}
                    print("Logged in.")
                except Exception as ex:
                    print("Login Failed.{}:{}".format(type(ex),ex))

                try:
                    print("Storing CaesarAI text...")
                    response = requests.post("https://revisionbank.onrender.com/storerevisioncards",json=json,headers=headers).json()
                    print("CaesarAI Stored.")
                except Exception as ex:
                    print("CaesarAI Text not stored.".format(type(ex),ex))
                boole = False
            elif sendrevisionbank == "n":
                boole = False
            else:
                boole = True

    def check_if_wav(self,argfilename):
        folder = self.audio_input_folder
        res = ""
        for i in os.listdir(folder):
            if argfilename in i :
                res += i
        if "wav" in res:
            return True
        else:
            return False

    def mp3_to_wav(self,src,dst):
        folder = self.audio_input_folder
        src = f"{folder}/{src}"
        dst = f"{folder}/{dst}"
        sound = AudioSegment.from_mp3(src)
        sound.export(dst, format="wav")
        os.remove(src)
    def check_file_exists(self,argfilename):
        folder =  self.notes_folder
        if folder in os.listdir():
            if f"{argfilename}.txt" in os.listdir(folder):
                return True
            else:
                return False
        else:
            return True

    def slice_sections(self,argfilename,largewav="large"):
                    
        filename = "{}/{}.wav".format(self.audio_input_folder,argfilename)
        sound = AudioSegment.from_wav(filename) 
        if self.notes_folder not in os.listdir():
            os.mkdir(self.notes_folder)

        if largewav == "small":
            sentences =""
            txtfilename = "{}/{}.txt".format(self.notes_folder,argfilename)
            with sr.AudioFile(filename) as source:
                # listen for the data (load audio to memory)
                audio_data = r.record(source)
                # recognize (convert from speech to text)
                text = r.recognize_google(audio_data)
                #print(text)
                with open(txtfilename,"w+") as f:
                    f.write(text)
                with open(txtfilename,"r") as f:
                    text = f.read()
                    textlist  = text.split("period")
                    #print(textlist)
                with open(txtfilename,"w+") as f:
                    for t in textlist:
                        sentence = f"{t.rstrip().lstrip()}.\n".capitalize()
                        #print(sentence)
                        sentences += f"{sentence}\n"
                        f.write(sentence)
                #print(textlist[0])
            #self.send_revisionbank(sentences,txtfilename)
            print(sentences)
        if largewav == "large": 
            sentences = ""

            duration  = sound.duration_seconds //60 
            # 7 seconds - 3 minutes
            #print(duration)
            
            minute_intervals = 0.5# 0.15 or 0.50 # TODO Try 1,2 and 3 and see which is the most optimized by seeing themost words/letters collected.
            percentages = [i * (minute_intervals/duration) for i in range(0,int(duration//minute_intervals))]
            #print(percentages)
            #percentages = [i/20 for i in range(0,20)]# 0.8
            

            # TODO Maximum audio time is 3.8 minutes, using percentage may be inconsistent if the audio duration increases.
            slicedsections =  [ sound[round(percentages[i] * len(sound)):round(percentages[i+1] * len(sound))] for i in range(len(percentages)-1) ]
            return slicedsections

    
    def run_api(self,argfilename,language_src,dest,slicedsections,new_sound,verbose=0):
            filename = "{}/{}.wav".format(self.audio_input_folder,argfilename)
            txtfilename = "{}/{}.txt".format(self.notes_folder,argfilename)
            folder_name = "audio-chunks"
            print("Starting...")


            for i, audio_chunk in enumerate(tqdm(slicedsections), start=1):
                # create a drectory to store the audio chunks
                if not os.path.isdir(folder_name):
                    os.mkdir(folder_name)
                print("Translating chunk{}.wav...".format(i))
                chunk_filename = os.path.join(folder_name, "chunk{}.wav".format(i))
                audio_chunk.export(chunk_filename, format="wav")
                with sr.AudioFile(chunk_filename) as source:
                    audio_listened = r.record(source)
                    # try converting it to text
                    try:
                        text = r.recognize_google(audio_listened,language=language_src)
                    except sr.UnknownValueError as e:
                        print("Error:", str(e))
                    else:
                        text = "{}. ".format(text.capitalize())
                        try:
                            with open(txtfilename,"a+",encoding="utf-8") as f:
                                f.write("{}\n".format(text))
                            with open(txtfilename,"r",encoding="utf-8") as f:
                                caesarnotesduplicate = f.readlines()
                        except UnicodeEncodeError as uex:
                            pass
                        try:
                            sim = cosine_similarity(caesarnotesduplicate[-1],caesarnotesduplicate[-2])
                            if sim > 0.95:
                                caesarnotesduplicate.remove(caesarnotesduplicate[-1])
                                try:
                                    with open(txtfilename,"w+",encoding="utf-8") as f:
                                        for word in caesarnotesduplicate:
                                            f.write(word)
                                except UnicodeEncodeError as uex:
                                    pass
                        except IndexError as iex:
                            pass
                        try:
                            print(chunk_filename, ":", text)
                            translation,dest,origin,src = self.caesartrans.translate(text,dest)
                            print(translation)
                            self.caesartts.run_tts(argfilename,translation,dest)
                            ttsfilename = f"{self.audio_output_folder}/{argfilename}.mp3"
                            sound = AudioSegment.from_mp3(ttsfilename) 
                            new_sound += sound
                            yield i,new_sound,src,text,translation

                            
                        except UnicodeEncodeError as uex:
                            pass
                try:
                    shutil.rmtree('audio-chunks')
                except FileNotFoundError as fex:
                    pass
            


    def clean_up_wav(self,argfilename):
        try:
            folder = self.audio_input_folder
            os.remove(f"{folder}/{argfilename}.wav")
            return True
        except Exception as ex:
            return False

    def clean_up_txt(self,argfilename):
        try:
            folder = self.notes_folder
            os.remove(f"{folder}/{argfilename}.txt")
            return True
        except Exception as ex:
            return False


    def load_transcription(self,argfilename):
        with open(f"{self.notes_folder}/{argfilename}.txt") as f:
            text = f.read()
        return text
    def load_audio(self,argfilename,fileformat,folder):
        print(f"{folder}/{argfilename}.{fileformat}")
        try:
            with open(f"{folder}/{argfilename}.{fileformat}","rb") as f:
                contents = f.read()
            return contents
        except FileNotFoundError as fex:
            return False


if __name__ == "__main__":
    caesarmbtr = CaesarMobileTranscribe()
    argfilename = "DIALOGUE_de"
    dest = "fr"
    ttsfilename_new = f"{caesarmbtr.audio_output_folder}/{argfilename}_new.mp3"
    new_sound = AudioSegment.empty()
    sliced_sections = caesarmbtr.slice_sections(argfilename)
    for i,new_sound in caesarmbtr.run_api(argfilename,dest,sliced_sections,new_sound):
        print(f"{i}:")
    
    new_sound.export(ttsfilename_new, format="mp3")