CaesarFrenchLLM / caesarfrenchllm.py
palondomus's picture
CaesarFrenchLLM first test
f8eb8df
raw
history blame
2.64 kB
import torch
import os
#os.environ['TRANSFORMERS_CACHE'] = "./.cache"
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
from vigogne.preprocess import generate_inference_chat_prompt
class CaesarFrenchLLM:
def __init__(self) -> None:
self.history = []
base_model_name_or_path = "bofenghuang/vigogne-2-7b-chat"
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path, padding_side="right", use_fast=False,)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
base_model_name_or_path,
torch_dtype=torch.float32,
device_map="auto",
# load_in_8bit=True,
# trust_remote_code=True,
# low_cpu_mem_usage=True,
)
# lora_model_name_or_path = ""
# model = PeftModel.from_pretrained(model, lora_model_name_or_path)
self.model.eval()
if torch.__version__ >= "2":
self.model = torch.compile(self.model)
self.streamer = TextStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
def infer(self,user_query,temperature=0.1,top_p=1.0,top_k=0,max_new_tokens=512,**kwargs,):
prompt = generate_inference_chat_prompt(user_query, tokenizer=self.tokenizer)
input_ids = self.tokenizer(prompt, return_tensors="pt")["input_ids"].to(self.model.device)
input_length = input_ids.shape[1]
generated_outputs = self.model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**kwargs,
),
streamer=self.streamer,
return_dict_in_generate=True,
)
generated_tokens = generated_outputs.sequences[0, input_length:]
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
def chat(self,user_input,**kwargs):
print(f">> <|user|>: {user_input}")
print(">> <|assistant|>: ", end="")
model_response = self.infer([*self.history, [user_input, ""]], **kwargs)
self.history.append([user_input, model_response])
return self.history[-1][1]
# print(f">> <|assistant|>: {history[-1][1]}")