Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from keras.models import load_model
|
2 |
+
from PIL import Image, ImageOps
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
classify_model = load_model('keras_model.h5')
|
8 |
+
|
9 |
+
def format_label(label):
|
10 |
+
"""
|
11 |
+
From '0 class 1\n' to 'class 1'
|
12 |
+
"""
|
13 |
+
return label[:-1]
|
14 |
+
|
15 |
+
|
16 |
+
def classify(image):
|
17 |
+
# Create the array of the right shape to feed into the keras model
|
18 |
+
# The 'length' or number of images you can put into the array is
|
19 |
+
# determined by the first position in the shape tuple, in this case 1.
|
20 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
21 |
+
|
22 |
+
#resize the image to a 224x224 with the same strategy as in TM2:
|
23 |
+
#resizing the image to be at least 224x224 and then cropping from the center
|
24 |
+
size = (224, 224)
|
25 |
+
image = ImageOps.fit(image, size, Image.ANTIALIAS)
|
26 |
+
|
27 |
+
#turn the image into a numpy array
|
28 |
+
image_array = np.asarray(image)
|
29 |
+
# Normalize the image
|
30 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
31 |
+
# Load the image into the array
|
32 |
+
data[0] = normalized_image_array
|
33 |
+
|
34 |
+
# run the inference
|
35 |
+
pred = classify_model.predict(data)
|
36 |
+
pred = pred.tolist()
|
37 |
+
|
38 |
+
with open('labels.txt','r') as f:
|
39 |
+
labels = f.readlines()
|
40 |
+
|
41 |
+
result = {format_label(labels[i]): round(pred[0][i],2) for i in range(len(pred[0]))}
|
42 |
+
sorted_result = {k: v for k, v in sorted(result.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
43 |
+
|
44 |
+
|
45 |
+
return sorted_result
|
46 |
+
|
47 |
+
|
48 |
+
title = "🐢"
|
49 |
+
|
50 |
+
gr.Interface(
|
51 |
+
fn=classify,
|
52 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
53 |
+
outputs=[gr.JSON()],
|
54 |
+
title=title,
|
55 |
+
).launch()
|