Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,27 +15,28 @@ import models
|
|
15 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
16 |
# print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
17 |
|
18 |
-
with open("index_to_species.json", "r") as file:
|
19 |
-
|
20 |
-
index_to_species = json.loads(index_to_species_data)
|
21 |
|
22 |
num_classes = len(list(index_to_species.keys()))
|
23 |
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
# Load the model
|
27 |
-
|
28 |
-
classify_model =
|
29 |
-
classify_model.load_state_dict(torch.load(
|
30 |
-
classify_model.eval()
|
31 |
|
32 |
k = 5
|
33 |
|
34 |
def classify(image):
|
35 |
-
|
|
|
|
|
36 |
tops = torch.topk(output, k=k).indices
|
37 |
scores = torch.softmax(output, dim=0)[tops]
|
38 |
-
|
39 |
result = {index_to_species[str(tops[i].item())].replace("_", " "): round(scores[i].item(), 2) for i in range(len(tops))}
|
40 |
sorted_result = {k: v for k, v in sorted(result.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
41 |
# Get the current time
|
@@ -56,4 +57,5 @@ gr.Interface(
|
|
56 |
inputs=gr.Image(type="pil", label="Input Image"),
|
57 |
outputs=[gr.JSON()],
|
58 |
title=title,
|
|
|
59 |
).launch()
|
|
|
15 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
16 |
# print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
17 |
|
18 |
+
# with open("index_to_species.json", "r") as file:
|
19 |
+
# index_to_species_data = file.read()
|
20 |
+
# index_to_species = json.loads(index_to_species_data)
|
21 |
|
22 |
num_classes = len(list(index_to_species.keys()))
|
23 |
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
# Load the model
|
27 |
+
linear_model_name = 'linear_2025-07-08.pt'
|
28 |
+
classify_model = models.LinearClassifier(input_dim=768, output_dim=num_classes)
|
29 |
+
classify_model.load_state_dict(torch.load(os.path.join('models', linear_model_name)))
|
|
|
30 |
|
31 |
k = 5
|
32 |
|
33 |
def classify(image):
|
34 |
+
embedding = extract_embedding(image)
|
35 |
+
embedding = embedding['embedding']
|
36 |
+
output = classify_model(torch.Tensor(embedding).to(device))
|
37 |
tops = torch.topk(output, k=k).indices
|
38 |
scores = torch.softmax(output, dim=0)[tops]
|
39 |
+
|
40 |
result = {index_to_species[str(tops[i].item())].replace("_", " "): round(scores[i].item(), 2) for i in range(len(tops))}
|
41 |
sorted_result = {k: v for k, v in sorted(result.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
42 |
# Get the current time
|
|
|
57 |
inputs=gr.Image(type="pil", label="Input Image"),
|
58 |
outputs=[gr.JSON()],
|
59 |
title=title,
|
60 |
+
debug=True
|
61 |
).launch()
|