Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,37 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
|
16 |
def classify(image):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
image = ImageOps.fit(image, size, Image.LANCZOS)
|
26 |
-
|
27 |
-
#turn the image into a numpy array
|
28 |
-
image_array = np.asarray(image)
|
29 |
-
# Normalize the image
|
30 |
-
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
31 |
-
# Load the image into the array
|
32 |
-
data[0] = normalized_image_array
|
33 |
-
|
34 |
-
# run the inference
|
35 |
-
pred = classify_model.predict(data)
|
36 |
-
pred = pred.tolist()
|
37 |
-
|
38 |
-
with open('labels.txt','r') as f:
|
39 |
-
labels = f.readlines()
|
40 |
-
|
41 |
-
result = {format_label(labels[i]): round(pred[0][i],2) for i in range(len(pred[0]))}
|
42 |
-
sorted_result = {k: v for k, v in sorted(result.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
43 |
-
|
44 |
-
|
45 |
-
return sorted_result
|
46 |
|
47 |
|
48 |
title = "🐢"
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
import gradio as gr
|
11 |
|
12 |
+
import models
|
13 |
+
|
14 |
+
with open("../prepare_data/index_to_species.json", "r") as file:
|
15 |
+
index_to_species_data = file.read()
|
16 |
+
index_to_species = json.loads(index_to_species_data)
|
17 |
|
18 |
+
num_classes = len(list(index_to_species.keys()))
|
19 |
+
|
20 |
+
# Load the model
|
21 |
+
classify_model = models.DinoVisionTransformerClassifier(num_classes)
|
22 |
+
classify_model.load_state_dict(torch.load("best_dinov2_both_2023-11-21_07-44-35.pth"))
|
23 |
+
classify_model.eval()
|
24 |
|
25 |
|
26 |
def classify(image):
|
27 |
+
output = classify_model(image)[0]
|
28 |
+
tops = torch.topk(output, k=k).indices
|
29 |
+
scores = torch.softmax(output, dim=0)[tops]
|
30 |
+
|
31 |
+
result = {index_to_species[str(tops[i].item())]: round(scores[i].item(), 2) for i in range(len(tops))}
|
32 |
+
sorted_result = {k: v for k, v in sorted(result.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
33 |
+
|
34 |
+
return sorted_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
title = "🐢"
|