panda47 commited on
Commit
db282a4
Β·
1 Parent(s): bd1c9f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -3,17 +3,18 @@ import torch
3
  from transformers import AutoProcessor, AutoModelForCausalLM
4
  from huggingface_hub import hf_hub_download
5
  from PIL import Image
 
6
 
7
  processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
8
- model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
9
 
10
- file_path = hf_hub_download(repo_id="Multimodal-Fatima/OK-VQA_train", filename="data", repo_type="dataset")
 
 
11
  image = Image.open(file_path).convert("RGB")
12
 
13
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
14
 
15
- question = "How many people are there?"
16
-
17
  input_ids = processor(text=question, add_special_tokens=False).input_ids
18
  input_ids = [processor.tokenizer.cls_token_id] + input_ids
19
  input_ids = torch.tensor(input_ids).unsqueeze(0)
 
3
  from transformers import AutoProcessor, AutoModelForCausalLM
4
  from huggingface_hub import hf_hub_download
5
  from PIL import Image
6
+ from datasets import load_dataset
7
 
8
  processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
9
+ model = AutoModelForCausalLM.from_pretrained("Multimodal-Fatima/OK-VQA_train")
10
 
11
+ dataset = load_dataset("question","answers","image")
12
+
13
+ file_path = hf_hub_download(repo_id="Multimodal-Fatima/OK-VQA_train", repo_type="dataset")
14
  image = Image.open(file_path).convert("RGB")
15
 
16
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
17
 
 
 
18
  input_ids = processor(text=question, add_special_tokens=False).input_ids
19
  input_ids = [processor.tokenizer.cls_token_id] + input_ids
20
  input_ids = torch.tensor(input_ids).unsqueeze(0)