panelforge
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import random
|
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
from io import BytesIO
|
9 |
|
10 |
token = os.getenv('HUGGINGFACE_TOKEN')
|
11 |
|
@@ -41,13 +40,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
41 |
generator = generator
|
42 |
).images[0]
|
43 |
|
44 |
-
|
45 |
-
buffered = BytesIO()
|
46 |
-
image.save(buffered, format="WEBP") # Save image to buffer in WebP format
|
47 |
-
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") # Convert buffer to base64 string
|
48 |
-
|
49 |
-
# Return the base64 image string and seed
|
50 |
-
return f"data:image/webp;base64,{image_base64}", seed
|
51 |
|
52 |
examples = [
|
53 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -63,12 +56,14 @@ css="""
|
|
63 |
"""
|
64 |
|
65 |
with gr.Blocks(css=css) as demo:
|
|
|
66 |
with gr.Column(elem_id="col-container"):
|
67 |
gr.Markdown(f"""
|
68 |
# Text-to-Image Gradio Template
|
69 |
""")
|
70 |
|
71 |
with gr.Row():
|
|
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
74 |
show_label=False,
|
@@ -76,18 +71,20 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
|
|
79 |
run_button = gr.Button("Run", scale=0)
|
80 |
|
81 |
-
|
82 |
-
result = gr.Textbox(label="Result (Base64 Image)", show_label=False, interactive=False)
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
visible=False,
|
90 |
)
|
|
|
91 |
seed = gr.Slider(
|
92 |
label="Seed",
|
93 |
minimum=0,
|
@@ -95,48 +92,54 @@ with gr.Blocks(css=css) as demo:
|
|
95 |
step=1,
|
96 |
value=0,
|
97 |
)
|
|
|
98 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
99 |
with gr.Row():
|
|
|
100 |
width = gr.Slider(
|
101 |
label="Width",
|
102 |
minimum=256,
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
-
value=1024,
|
106 |
)
|
|
|
107 |
height = gr.Slider(
|
108 |
label="Height",
|
109 |
minimum=256,
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
-
value=1024,
|
113 |
)
|
|
|
114 |
with gr.Row():
|
|
|
115 |
guidance_scale = gr.Slider(
|
116 |
label="Guidance scale",
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
-
value=
|
121 |
)
|
|
|
122 |
num_inference_steps = gr.Slider(
|
123 |
label="Number of inference steps",
|
124 |
minimum=1,
|
125 |
maximum=50,
|
126 |
step=1,
|
127 |
-
value=
|
128 |
)
|
129 |
|
130 |
gr.Examples(
|
131 |
-
examples=examples,
|
132 |
-
inputs=[prompt]
|
133 |
)
|
134 |
-
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn=infer,
|
138 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
-
outputs=[result, seed]
|
140 |
)
|
141 |
|
142 |
demo.queue().launch()
|
|
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
token = os.getenv('HUGGINGFACE_TOKEN')
|
10 |
|
|
|
40 |
generator = generator
|
41 |
).images[0]
|
42 |
|
43 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
examples = [
|
46 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
56 |
"""
|
57 |
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
+
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
# Text-to-Image Gradio Template
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
66 |
+
|
67 |
prompt = gr.Text(
|
68 |
label="Prompt",
|
69 |
show_label=False,
|
|
|
71 |
placeholder="Enter your prompt",
|
72 |
container=False,
|
73 |
)
|
74 |
+
|
75 |
run_button = gr.Button("Run", scale=0)
|
76 |
|
77 |
+
result = gr.Image(label="Result", show_label=False)
|
|
|
78 |
|
79 |
with gr.Accordion("Advanced Settings", open=False):
|
80 |
+
|
81 |
negative_prompt = gr.Text(
|
82 |
label="Negative prompt",
|
83 |
max_lines=1,
|
84 |
placeholder="Enter a negative prompt",
|
85 |
visible=False,
|
86 |
)
|
87 |
+
|
88 |
seed = gr.Slider(
|
89 |
label="Seed",
|
90 |
minimum=0,
|
|
|
92 |
step=1,
|
93 |
value=0,
|
94 |
)
|
95 |
+
|
96 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
97 |
+
|
98 |
with gr.Row():
|
99 |
+
|
100 |
width = gr.Slider(
|
101 |
label="Width",
|
102 |
minimum=256,
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
+
value=1024, #Replace with defaults that work for your model
|
106 |
)
|
107 |
+
|
108 |
height = gr.Slider(
|
109 |
label="Height",
|
110 |
minimum=256,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
+
value=1024, #Replace with defaults that work for your model
|
114 |
)
|
115 |
+
|
116 |
with gr.Row():
|
117 |
+
|
118 |
guidance_scale = gr.Slider(
|
119 |
label="Guidance scale",
|
120 |
minimum=0.0,
|
121 |
maximum=10.0,
|
122 |
step=0.1,
|
123 |
+
value=0.0, #Replace with defaults that work for your model
|
124 |
)
|
125 |
+
|
126 |
num_inference_steps = gr.Slider(
|
127 |
label="Number of inference steps",
|
128 |
minimum=1,
|
129 |
maximum=50,
|
130 |
step=1,
|
131 |
+
value=2, #Replace with defaults that work for your model
|
132 |
)
|
133 |
|
134 |
gr.Examples(
|
135 |
+
examples = examples,
|
136 |
+
inputs = [prompt]
|
137 |
)
|
|
|
138 |
gr.on(
|
139 |
triggers=[run_button.click, prompt.submit],
|
140 |
+
fn = infer,
|
141 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
142 |
+
outputs = [result, seed]
|
143 |
)
|
144 |
|
145 |
demo.queue().launch()
|