File size: 4,883 Bytes
34d43e8
 
 
 
3a3d2d4
34d43e8
 
 
 
00f0917
34d43e8
 
 
 
 
 
 
 
 
 
 
 
3a3d2d4
 
 
34d43e8
3a3d2d4
34d43e8
 
 
 
 
 
 
 
 
3a3d2d4
34d43e8
 
 
 
 
 
3a3d2d4
 
 
 
34d43e8
3a3d2d4
 
34d43e8
 
 
 
 
 
 
17f513e
34d43e8
 
 
 
 
 
 
 
 
 
b8262b8
5c808ae
 
425c2b6
5c808ae
 
 
 
 
 
 
 
34d43e8
4e22d3a
 
34d43e8
 
5244b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d43e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433e8e9
34d43e8
 
 
 
 
 
 
433e8e9
34d43e8
 
17f513e
 
 
 
34d43e8
 
 
 
 
 
 
 
 
 
 
 
 
17f513e
34d43e8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import numpy as np
import random

import spaces  # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v11-sdxl"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Specific prefixes for the prompt and negative prompt
prompt_prefix = "score_9, score_8_up, score_7_up, source_anime"
negative_prompt_prefix = "score_6, score_5, score_4, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"

@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Prepend the specific terms to the prompt and negative prompt
    full_prompt = f"{prompt_prefix}, {prompt}"
    full_negative_prompt = f"{negative_prompt_prefix}, {negative_prompt}"

    image = pipe(
        prompt=full_prompt,
        negative_prompt=full_negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed, full_prompt, full_negative_prompt

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Rainbow Media Anime Generator")
        gr.Markdown(' ### <a href="https://example.com" target="_blank" class="button-link">Try a more realistic model</a>')

        result = gr.Image(label="Result", show_label=False)

        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            lines=3,
            placeholder="Enter your prompt",
            container=False,
        )


        run_button = gr.Button("Run", variant="primary")

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    lines=3,
                    placeholder="Enter a negative prompt",
                    visible=True,  # Show negative prompt by default
                )

            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=35,  # Replace with defaults that work for your model
                )

            # Add text outputs to show full prompt and negative prompt
            full_prompt_output = gr.Textbox(label="Full Prompt", interactive=False)
            full_negative_prompt_output = gr.Textbox(label="Full Negative Prompt", interactive=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed, full_prompt_output, full_negative_prompt_output],
    )

if __name__ == "__main__":
    demo.launch()