rainbow_media_x / app.py
panelforge's picture
Update app.py
decc71b verified
raw
history blame
11.3 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
import importlib # to import tag modules dynamically
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Function to load tags dynamically based on the selected tab
def load_tags(active_tab):
if active_tab == "Gay":
tags_module = importlib.import_module('tags_gay') # dynamically import the tags_gay module
elif active_tab == "Straight":
tags_module = importlib.import_module('tags_straight') # dynamically import the tags_straight module
elif active_tab == "Lesbian":
tags_module = importlib.import_module('tags_lesbian') # dynamically import the tags_lesbian module
else:
raise ValueError(f"Unknown tab: {active_tab}")
return tags_module
@spaces.GPU
def infer(
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, selected_hair_style_tags,
selected_position_tags, selected_fetish_tags, selected_location_tags, selected_camera_tags, selected_atmosphere_tags,
active_tab, progress=gr.Progress(track_tqdm=True)
):
# Dynamically load the correct tags module based on active tab
tags_module = load_tags(active_tab)
# Now use the tags from the loaded module
participant_tags = tags_module.participant_tags
tribe_tags = tags_module.tribe_tags
role_tags = tags_module.role_tags
skin_tone_tags = tags_module.skin_tone_tags
body_type_tags = tags_module.body_type_tags
tattoo_tags = tags_module.tattoo_tags
piercing_tags = tags_module.piercing_tags
expression_tags = tags_module.expression_tags
eye_tags = tags_module.eye_tags
hair_style_tags = tags_module.hair_style_tags
position_tags = tags_module.position_tags
fetish_tags = tags_module.fetish_tags
location_tags = tags_module.location_tags
camera_tags = tags_module.camera_tags
atmosphere_tags = tags_module.atmosphere_tags
# Handle the active tab and generate the prompt accordingly
tag_list = (
[participant_tags[tag] for tag in selected_participant_tags] +
[tribe_tags[tag] for tag in selected_tribe_tags] +
[role_tags[tag] for tag in selected_role_tags] +
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
[body_type_tags[tag] for tag in selected_body_type_tags] +
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
[piercing_tags[tag] for tag in selected_piercing_tags] +
[expression_tags[tag] for tag in selected_expression_tags] +
[eye_tags[tag] for tag in selected_eye_tags] +
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
[position_tags[tag] for tag in selected_position_tags] +
[fetish_tags[tag] for tag in selected_fetish_tags] +
[location_tags[tag] for tag in selected_location_tags] +
[camera_tags[tag] for tag in selected_camera_tags] +
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
)
final_prompt = f"score_9, score_8_up, score_7_up, source_anime, {', '.join(tag_list)}"
# Concatenate additional negative prompts
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed, f"Prompt: {final_prompt}\nNegative Prompt: {full_negative_prompt}"
# CSS for the layout
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Image Generator with Tags and Prompts")
result = gr.Image(label="Result", show_label=False)
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
active_tab = gr.State("Prompt Input")
with gr.Tabs() as tabs:
# Prompt Input Tab
with gr.TabItem("Prompt Input"):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your custom prompt")
tabs.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
# Straight Tab
with gr.TabItem("Straight"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Straight", inputs=None, outputs=active_tab)
# Gay Tab
with gr.TabItem("Gay"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Gay", inputs=None, outputs=active_tab)
# Lesbian Tab
with gr.TabItem("Lesbian"):
selected_participant_tags = gr.CheckboxGroup(choices=[], label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=[], label="Tribe Tags")
selected_role_tags = gr.CheckboxGroup(choices=[], label="Role Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=[], label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=[], label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=[], label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=[], label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=[], label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=[], label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=[], label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=[], label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=[], label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=[], label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=[], label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=[], label="Atmosphere Tags")
tabs.select(lambda: "Lesbian", inputs=None, outputs=active_tab)
# Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=1, maximum=50, step=1, value=35)
run_button = gr.Button("Run")
run_button.click(
infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_role_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, active_tab],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()