File size: 8,833 Bytes
dc0ac35
 
8c677e9
dc0ac35
 
88e182d
 
 
dc0ac35
 
 
 
 
 
 
 
 
 
 
 
 
 
88e182d
 
dc0ac35
 
 
88e182d
 
 
8c677e9
 
88e182d
 
 
 
 
 
 
 
 
 
 
 
dc0ac35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e182d
 
 
 
 
 
 
 
 
 
dc0ac35
88e182d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0ac35
88e182d
 
 
 
 
dc0ac35
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import base64
import json
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_authenticator import Authenticate
import yaml
from yaml.loader import SafeLoader
import pandas as pd
from PIL import Image

import numpy as np
import torch
import cv2
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import bbox_visualizer as bbv
from st_clickable_images import clickable_images
from glob import glob


MODEL_PATH = "pankaj-munde/FScout_v0.2"
# image_dir = "./Data/images/"
detr_preprocessor = AutoImageProcessor.from_pretrained(MODEL_PATH, token=st.secrets["HF_TOKEN"])
detr_model = AutoModelForObjectDetection.from_pretrained(MODEL_PATH, token=st.secrets["HF_TOKEN"])
colors = [[236, 112, 99], [165, 105, 189], [ 225, 9, 232], [ 255, 38, 8 ], [ 247, 249, 249 ], [170, 183, 184 ],  [ 247, 249, 249 ],  [ 247, 249, 249 ]]


# with open('./static/config.yaml') as file:
#     config = yaml.load(file, Loader=SafeLoader)


config = json.loads(st.secrets["CONFIG"])

authenticator = Authenticate(
    config['credentials'],
    config['cookie']['name'],
    config['cookie']['key'],
    config['cookie']['expiry_days'],
    config['preauthorized']
)


name, authentication_status, username = authenticator.login('Login', 'main')

# images_lst = os.listdir(image_dir)
# images = []
# for file in images_lst:
#     ipath = os.path.join(os.path.abspath(image_dir), file)
#     with open(ipath, "rb") as image:
#         encoded = base64.b64encode(image.read()).decode()
#         images.append(f"data:image/jpeg;base64,{encoded}")



def get_detr_predictions(image, thresh):
    with torch.no_grad():
        inputs = detr_preprocessor(images=image, return_tensors="pt")
        outputs = detr_model(**inputs)
        target_sizes = torch.tensor([image.size[::-1]])
        results = detr_preprocessor.post_process_object_detection(
            outputs, threshold=float(thresh), target_sizes=target_sizes)[0]
    return results


def add_label(img,
              label,
              bbox,
              draw_bg=True,
              text_bg_color=(255, 255, 255),
              text_color=(0, 0, 0),
              top=True):
    """adds label, inside or outside the rectangle

    Parameters
    ----------
    img : ndarray
        the image on which the label is to be written, preferably the image with the rectangular bounding box drawn
    label : str
        the text (label) to be written
    bbox : list
        a list containing x_min, y_min, x_max and y_max of the rectangle positions
    draw_bg : bool, optional
        if True, draws the background of the text, else just the text is written, by default True
    text_bg_color : tuple, optional
        the background color of the label that is filled, by default (255, 255, 255)
    text_color : tuple, optional
        color of the text (label) to be written, by default (0, 0, 0)
    top : bool, optional
        if True, writes the label on top of the bounding box, else inside, by default True

    Returns
    -------
    ndarray
        the image with the label written
    """

    text_width = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)[0][0]

    if top:
        label_bg = [bbox[0], bbox[1], bbox[0] + text_width, bbox[1] + 30]
        if draw_bg:
            cv2.rectangle(img, (label_bg[0], label_bg[1]),
                          (label_bg[2] + 5, label_bg[3]), text_bg_color, -1)
        cv2.putText(img, label, (bbox[0] + 5, bbox[1] - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)

    else:
        label_bg = [bbox[0], bbox[1], bbox[0] + text_width, bbox[1] + 30]
        if draw_bg:
            cv2.rectangle(img, (label_bg[0], label_bg[1]),
                          (label_bg[2] + 5, label_bg[3]), text_bg_color, -1)
        cv2.putText(img, label, (bbox[0] + 5, bbox[1] - 5 + 30),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)

    return img


def image_checkup_v4(ipath, thresh, show_count):
    
    imgOrig = ipath.convert("RGB")
    image = imgOrig.copy()

    # crop_name, crop_conf, crop_id = get_crop(image)

    detr_results = get_detr_predictions(image, thresh)

    final_results = []
    all_predictions = {
        "Name": "Detailed View",
        "Value": ""
    }

    # result_data = {crop_name: crop_conf, "Inspection_data": []}
    img_with_box = np.array(image).copy()
    for idx, label_id in enumerate(detr_results["labels"].numpy()):
        pred_score = round(detr_results["scores"].numpy()[idx], 2)
        predicted_label = detr_model.config.id2label[label_id]
        # if float(pred_score) > 50:

        bbox = list(np.array(detr_results["boxes"].numpy()[idx], dtype=int))
        img_with_box = bbv.draw_rectangle(img_with_box, bbox, bbox_color=colors[label_id])
        # img_with_box = bbv.add_label(img_with_box, label=f"{predicted_label} : {pred_score}", bbox=bbox, top=False)
        if show_count:
            img_with_box = bbv.add_label(
                img_with_box, f"{idx + 1}", bbox, draw_bg=True, top=True)
        
        else:
            img_with_box = bbv.add_label(
            img_with_box, f"", bbox, draw_bg=False, top=True)

        final_results.append(
            {"prediction": predicted_label,
             "confidence": pred_score,
             "color": colors[label_id]
             }
        )

        all_predictions["Value"] += f"\n{idx + 1}. {predicted_label.split('_')[-1]} - {round(pred_score, 2)}%\n"
    if len(final_results) > 0:
        df = pd.DataFrame(final_results)
        info = df["prediction"].value_counts()
        resized_seg = cv2.resize(img_with_box, imgOrig.size)
        new_res = []

        for k, v in dict(info).items():
            tmp = {}
            prd_id = detr_model.config.label2id[k]
            tmp["Insect"] = k
            tmp["Count"] = v
            tmp["Color"] = colors[int(prd_id)]
            new_res.append(tmp)
        
        return new_res, resized_seg
    
    return [], img_with_box


def add_logo(logo_path, width, height):
    """Read and return a resized logo"""
    logo = Image.open(logo_path)
    # modified_logo = logo.resize((width, height))
    return logo


# st.write("<hr/>", unsafe_allow_html=True)
if st.session_state["authentication_status"]:
    with st.sidebar:
        my_logo = add_logo(logo_path="./static//FarmGyan logo_1.png", width=50, height=60)
        st.image(my_logo)
        ucol, bcol = st.columns([3, 2])
        ucol.write(f'## Welcome *{st.session_state["name"]}*')
        with bcol:
            authenticator.logout('Logout', 'main')
        
        st.write("<hr/>", unsafe_allow_html=True)

    st.title(":seedling: FarmGyan | Insects Scouting")
    st.write("<hr/>", unsafe_allow_html=True)
        
    st.write("## πŸ–– Upload image for prediction")

    uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
    st.write("<hr/>", unsafe_allow_html=True)

    with st.spinner(text='In progress'):
        st.sidebar.write("## βš™οΈ Configurations") 
        st.sidebar.write("<hr/>", unsafe_allow_html=True)

        st.sidebar.write("#### Prediction Threshold") 
        thresh = st.sidebar.slider("Threshold", 0.0, 1.0, 0.7, 0.1)
        st.sidebar.write("#### Boxes Count") 
        show_count = st.sidebar.checkbox("Show Count")
        if uploaded_file is not None:
            clicked = None
            image = Image.open(uploaded_file).convert("RGB")
            predicted_data, result_image = image_checkup_v4(image, thresh, show_count)
            # print(predicted_data)

            col, col1 = st.columns([2, 4])
            feedback_submitted = False  # Initialize the flag
            with col:
                st.subheader("πŸ’― Predicted Labels")
                st.write(f"<h3>Total Count : {sum([d['Count'] for d in predicted_data])}</h3>", unsafe_allow_html=True)
                for i, d in enumerate(predicted_data):
                    # Create HTML markup with style information
                    
                    html_string = f"""
                    <div style="display: flex; align-items: center;">
                        <b style="margin-right: 15px">{i + 1}. </b>
                        <div style="background-color: rgb({d["Color"][0]}, {d["Color"][1]}, {d["Color"][2]}); width: 20px; height: 20px; border: 1px solid black; margin-right: 10px;"></div>
                        <p style="margin-top: 15px"><b>{d["Insect"]} : {d["Count"]} </b></p>
                    </div>
                """

                    st.markdown(html_string, unsafe_allow_html=True)

                st.write("<hr/>", unsafe_allow_html=True)
                
            with col1:
                st.subheader("πŸ€ Predicted Image")
                st.write("<br/>", unsafe_allow_html=True)

                st.image(result_image)