Spaces:
Sleeping
Sleeping
File size: 8,833 Bytes
dc0ac35 8c677e9 dc0ac35 88e182d dc0ac35 88e182d dc0ac35 88e182d 8c677e9 88e182d dc0ac35 88e182d dc0ac35 88e182d dc0ac35 88e182d dc0ac35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import base64
import json
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_authenticator import Authenticate
import yaml
from yaml.loader import SafeLoader
import pandas as pd
from PIL import Image
import numpy as np
import torch
import cv2
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import bbox_visualizer as bbv
from st_clickable_images import clickable_images
from glob import glob
MODEL_PATH = "pankaj-munde/FScout_v0.2"
# image_dir = "./Data/images/"
detr_preprocessor = AutoImageProcessor.from_pretrained(MODEL_PATH, token=st.secrets["HF_TOKEN"])
detr_model = AutoModelForObjectDetection.from_pretrained(MODEL_PATH, token=st.secrets["HF_TOKEN"])
colors = [[236, 112, 99], [165, 105, 189], [ 225, 9, 232], [ 255, 38, 8 ], [ 247, 249, 249 ], [170, 183, 184 ], [ 247, 249, 249 ], [ 247, 249, 249 ]]
# with open('./static/config.yaml') as file:
# config = yaml.load(file, Loader=SafeLoader)
config = json.loads(st.secrets["CONFIG"])
authenticator = Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
name, authentication_status, username = authenticator.login('Login', 'main')
# images_lst = os.listdir(image_dir)
# images = []
# for file in images_lst:
# ipath = os.path.join(os.path.abspath(image_dir), file)
# with open(ipath, "rb") as image:
# encoded = base64.b64encode(image.read()).decode()
# images.append(f"data:image/jpeg;base64,{encoded}")
def get_detr_predictions(image, thresh):
with torch.no_grad():
inputs = detr_preprocessor(images=image, return_tensors="pt")
outputs = detr_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = detr_preprocessor.post_process_object_detection(
outputs, threshold=float(thresh), target_sizes=target_sizes)[0]
return results
def add_label(img,
label,
bbox,
draw_bg=True,
text_bg_color=(255, 255, 255),
text_color=(0, 0, 0),
top=True):
"""adds label, inside or outside the rectangle
Parameters
----------
img : ndarray
the image on which the label is to be written, preferably the image with the rectangular bounding box drawn
label : str
the text (label) to be written
bbox : list
a list containing x_min, y_min, x_max and y_max of the rectangle positions
draw_bg : bool, optional
if True, draws the background of the text, else just the text is written, by default True
text_bg_color : tuple, optional
the background color of the label that is filled, by default (255, 255, 255)
text_color : tuple, optional
color of the text (label) to be written, by default (0, 0, 0)
top : bool, optional
if True, writes the label on top of the bounding box, else inside, by default True
Returns
-------
ndarray
the image with the label written
"""
text_width = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 1, 2)[0][0]
if top:
label_bg = [bbox[0], bbox[1], bbox[0] + text_width, bbox[1] + 30]
if draw_bg:
cv2.rectangle(img, (label_bg[0], label_bg[1]),
(label_bg[2] + 5, label_bg[3]), text_bg_color, -1)
cv2.putText(img, label, (bbox[0] + 5, bbox[1] - 5),
cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
else:
label_bg = [bbox[0], bbox[1], bbox[0] + text_width, bbox[1] + 30]
if draw_bg:
cv2.rectangle(img, (label_bg[0], label_bg[1]),
(label_bg[2] + 5, label_bg[3]), text_bg_color, -1)
cv2.putText(img, label, (bbox[0] + 5, bbox[1] - 5 + 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, text_color, 2)
return img
def image_checkup_v4(ipath, thresh, show_count):
imgOrig = ipath.convert("RGB")
image = imgOrig.copy()
# crop_name, crop_conf, crop_id = get_crop(image)
detr_results = get_detr_predictions(image, thresh)
final_results = []
all_predictions = {
"Name": "Detailed View",
"Value": ""
}
# result_data = {crop_name: crop_conf, "Inspection_data": []}
img_with_box = np.array(image).copy()
for idx, label_id in enumerate(detr_results["labels"].numpy()):
pred_score = round(detr_results["scores"].numpy()[idx], 2)
predicted_label = detr_model.config.id2label[label_id]
# if float(pred_score) > 50:
bbox = list(np.array(detr_results["boxes"].numpy()[idx], dtype=int))
img_with_box = bbv.draw_rectangle(img_with_box, bbox, bbox_color=colors[label_id])
# img_with_box = bbv.add_label(img_with_box, label=f"{predicted_label} : {pred_score}", bbox=bbox, top=False)
if show_count:
img_with_box = bbv.add_label(
img_with_box, f"{idx + 1}", bbox, draw_bg=True, top=True)
else:
img_with_box = bbv.add_label(
img_with_box, f"", bbox, draw_bg=False, top=True)
final_results.append(
{"prediction": predicted_label,
"confidence": pred_score,
"color": colors[label_id]
}
)
all_predictions["Value"] += f"\n{idx + 1}. {predicted_label.split('_')[-1]} - {round(pred_score, 2)}%\n"
if len(final_results) > 0:
df = pd.DataFrame(final_results)
info = df["prediction"].value_counts()
resized_seg = cv2.resize(img_with_box, imgOrig.size)
new_res = []
for k, v in dict(info).items():
tmp = {}
prd_id = detr_model.config.label2id[k]
tmp["Insect"] = k
tmp["Count"] = v
tmp["Color"] = colors[int(prd_id)]
new_res.append(tmp)
return new_res, resized_seg
return [], img_with_box
def add_logo(logo_path, width, height):
"""Read and return a resized logo"""
logo = Image.open(logo_path)
# modified_logo = logo.resize((width, height))
return logo
# st.write("<hr/>", unsafe_allow_html=True)
if st.session_state["authentication_status"]:
with st.sidebar:
my_logo = add_logo(logo_path="./static//FarmGyan logo_1.png", width=50, height=60)
st.image(my_logo)
ucol, bcol = st.columns([3, 2])
ucol.write(f'## Welcome *{st.session_state["name"]}*')
with bcol:
authenticator.logout('Logout', 'main')
st.write("<hr/>", unsafe_allow_html=True)
st.title(":seedling: FarmGyan | Insects Scouting")
st.write("<hr/>", unsafe_allow_html=True)
st.write("## π Upload image for prediction")
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
st.write("<hr/>", unsafe_allow_html=True)
with st.spinner(text='In progress'):
st.sidebar.write("## βοΈ Configurations")
st.sidebar.write("<hr/>", unsafe_allow_html=True)
st.sidebar.write("#### Prediction Threshold")
thresh = st.sidebar.slider("Threshold", 0.0, 1.0, 0.7, 0.1)
st.sidebar.write("#### Boxes Count")
show_count = st.sidebar.checkbox("Show Count")
if uploaded_file is not None:
clicked = None
image = Image.open(uploaded_file).convert("RGB")
predicted_data, result_image = image_checkup_v4(image, thresh, show_count)
# print(predicted_data)
col, col1 = st.columns([2, 4])
feedback_submitted = False # Initialize the flag
with col:
st.subheader("π― Predicted Labels")
st.write(f"<h3>Total Count : {sum([d['Count'] for d in predicted_data])}</h3>", unsafe_allow_html=True)
for i, d in enumerate(predicted_data):
# Create HTML markup with style information
html_string = f"""
<div style="display: flex; align-items: center;">
<b style="margin-right: 15px">{i + 1}. </b>
<div style="background-color: rgb({d["Color"][0]}, {d["Color"][1]}, {d["Color"][2]}); width: 20px; height: 20px; border: 1px solid black; margin-right: 10px;"></div>
<p style="margin-top: 15px"><b>{d["Insect"]} : {d["Count"]} </b></p>
</div>
"""
st.markdown(html_string, unsafe_allow_html=True)
st.write("<hr/>", unsafe_allow_html=True)
with col1:
st.subheader("π Predicted Image")
st.write("<br/>", unsafe_allow_html=True)
st.image(result_image)
|