File size: 4,366 Bytes
9e582c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import pickle\n",
    "from language import Language\n",
    "from utility import Encoder, Decoder, encoderBlock, decoderBlock, MultiHeadAttention, Head, FeedForward\n",
    "import warnings\n",
    "from typing import List\n",
    "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['लॉक्सलाक्राक्यालालासी']"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s = 'a' * 1\n",
    "generate([s])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'^थ्रालाष्राप्टोार्फ्रास्रफ्फ्फ्'"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "output_lang.decode(o.tolist()[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([20,  4,  5, 12,  4,  3])"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s = \"pankaj\"\n",
    "torch.tensor(input_lang.encode(s), device=device, dtype=torch.long)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7864\n",
      "\n",
      "Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import requests\n",
    "import gradio as gr\n",
    "\n",
    "# Define the API endpoint\n",
    "API_URL = \"http://127.0.0.1:8000/trans\"\n",
    "\n",
    "# Function to call the FastAPI backend\n",
    "def predict(user_input):\n",
    "    # Prepare the data to send to the FastAPI API\n",
    "    payload = {\"query\": user_input}\n",
    "    \n",
    "    # Make a request to the FastAPI backend\n",
    "    response = requests.post(API_URL, json=payload)\n",
    "    \n",
    "    # Get the response JSON\n",
    "    result = response.json()\n",
    "    \n",
    "    # Extract the answer \n",
    "    return \" \".join(result[\"response\"])\n",
    "    \n",
    "\n",
    "# Launch the Gradio interface\n",
    "if __name__ == \"__main__\":\n",
    "    gr.Interface(predict,\n",
    "                 inputs=['textbox'],\n",
    "                 outputs=['text']).launch(share=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "\n",
    "def greet(name, intensity):\n",
    "    return \"Hello, \" + name + \"!\" * int(intensity)\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=greet,\n",
    "    inputs=[\"text\", \"slider\"],\n",
    "    outputs=[\"text\"],\n",
    ")\n",
    "\n",
    "demo.launch()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "transliteration",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}