Spaces:
Running
Running
File size: 4,366 Bytes
9e582c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pickle\n",
"from language import Language\n",
"from utility import Encoder, Decoder, encoderBlock, decoderBlock, MultiHeadAttention, Head, FeedForward\n",
"import warnings\n",
"from typing import List\n",
"warnings.filterwarnings(\"ignore\", category=FutureWarning)\n"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['लॉक्सलाक्राक्यालालासी']"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s = 'a' * 1\n",
"generate([s])"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'^थ्रालाष्राप्टोार्फ्रास्रफ्फ्फ्'"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output_lang.decode(o.tolist()[0])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([20, 4, 5, 12, 4, 3])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s = \"pankaj\"\n",
"torch.tensor(input_lang.encode(s), device=device, dtype=torch.long)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7864\n",
"\n",
"Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import requests\n",
"import gradio as gr\n",
"\n",
"# Define the API endpoint\n",
"API_URL = \"http://127.0.0.1:8000/trans\"\n",
"\n",
"# Function to call the FastAPI backend\n",
"def predict(user_input):\n",
" # Prepare the data to send to the FastAPI API\n",
" payload = {\"query\": user_input}\n",
" \n",
" # Make a request to the FastAPI backend\n",
" response = requests.post(API_URL, json=payload)\n",
" \n",
" # Get the response JSON\n",
" result = response.json()\n",
" \n",
" # Extract the answer \n",
" return \" \".join(result[\"response\"])\n",
" \n",
"\n",
"# Launch the Gradio interface\n",
"if __name__ == \"__main__\":\n",
" gr.Interface(predict,\n",
" inputs=['textbox'],\n",
" outputs=['text']).launch(share=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"def greet(name, intensity):\n",
" return \"Hello, \" + name + \"!\" * int(intensity)\n",
"\n",
"demo = gr.Interface(\n",
" fn=greet,\n",
" inputs=[\"text\", \"slider\"],\n",
" outputs=[\"text\"],\n",
")\n",
"\n",
"demo.launch()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "transliteration",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|