File size: 6,322 Bytes
9e582c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import torch.nn as nn
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoder_block_size = 33
decoder_block_size = 30

class Head(nn.Module):
    """ one self-attention head """

    def __init__(self, n_embd, d_k, dropout, mask=0): # d_k is dimention of key , nomaly d_k = n_embd / 4
        super().__init__()
        self.mask = mask
        self.key = nn.Linear(n_embd, d_k, bias=False, device=device)
        self.query = nn.Linear(n_embd, d_k, bias=False, device=device)
        self.value = nn.Linear(n_embd, d_k, bias=False, device=device)
        if mask:
            self.register_buffer('tril', torch.tril(torch.ones(encoder_block_size, encoder_block_size, device=device)))
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, encoder_output = None):
        B,T,C = x.shape

        if encoder_output is not None:
            k = self.key(encoder_output)
            Be, Te, Ce = encoder_output.shape
        else:
            k = self.key(x) # (B,T,d_k)

        q = self.query(x) # (B,T,d_k)
        # compute attention scores
        wei = q @ k.transpose(-2, -1) * C**-0.5 # (B,T,T)

        if self.mask:
            if encoder_output is not None:
                wei = wei.masked_fill(self.tril[:T, :Te] == 0, float('-inf')) # (B,T,T)
            else:
                wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B,T,T)

        wei = F.softmax(wei, dim=-1)
        wei = self.dropout(wei)
        # perform weighted aggregation of values
        if encoder_output is not None:
            v = self.value(encoder_output)
        else:
            v = self.value(x)
        out = wei @ v # (B,T,C)
        return out

class MultiHeadAttention(nn.Module):
    """ multiple self attention heads in parallel """

    def __init__(self, n_embd, num_head, d_k, dropout, mask=0):
        super().__init__()
        self.heads = nn.ModuleList([Head(n_embd, d_k, dropout, mask) for _ in range(num_head)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, encoder_output=None):
        out = torch.cat([h(x, encoder_output) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out

class FeedForward(nn.Module):
    """ multiple self attention heads in parallel """

    def __init__(self, n_embd, dropout):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)

class encoderBlock(nn.Module):
    """ Tranformer encoder block : communication followed by computation """

    def __init__(self, n_embd, n_head, dropout):
        super().__init__()
        d_k = n_embd // n_head
        self.sa = MultiHeadAttention(n_embd, n_head, d_k, dropout)
        self.ffwd = FeedForward(n_embd, dropout)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x, encoder_output=None):
        x = x + self.sa(self.ln1(x), encoder_output)
        x = x + self.ffwd(self.ln2(x))
        return x

class Encoder(nn.Module):

    def __init__(self, n_embd, n_head, n_layers, dropout):
        super().__init__()

        self.token_embedding_table = nn.Embedding(input_vocab_size, n_embd) # n_embd: input embedding dimension
        self.position_embedding_table = nn.Embedding(encoder_block_size, n_embd)
        self.blocks = nn.Sequential(*[encoderBlock(n_embd, n_head, dropout) for _ in range(n_layers)])
        self.ln_f = nn.LayerNorm(n_embd) # final layer norm

    def forward(self, idx):
        B, T = idx.shape
        tok_emb = self.token_embedding_table(idx) # (B,T,n_embd)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,n_embd)
        x = tok_emb + pos_emb # (B,T,n_embd)
        x = self.blocks(x) # apply one attention layer (B,T,C)
        x = self.ln_f(x) # (B,T,C)
        return x


class decoderBlock(nn.Module):
    """ Tranformer decoder block : self communication then cross communication followed by computation """

    def __init__(self, n_embd, n_head, dropout):
        super().__init__()
        d_k = n_embd // n_head
        self.sa = MultiHeadAttention(n_embd, n_head, d_k, dropout, mask = 1)
        self.ca = MultiHeadAttention(n_embd, n_head, d_k, dropout, mask = 1)
        self.ffwd = FeedForward(n_embd, dropout)
        self.ln1 = nn.LayerNorm(n_embd, device=device)
        self.ln2 = nn.LayerNorm(n_embd, device=device)
        self.ln3 = nn.LayerNorm(n_embd, device=device)

    def forward(self, x_encoder_output):
        x = x_encoder_output[0]
        encoder_output = x_encoder_output[1]
        x = x + self.sa(self.ln1(x))
        x = x + self.ca(self.ln2(x), encoder_output)
        x = x + self.ffwd(self.ln3(x))
        return (x,encoder_output)

class Decoder(nn.Module):

    def __init__(self, n_embd, n_head, n_layers, dropout):
        super().__init__()

        self.token_embedding_table = nn.Embedding(output_vocab_size, n_embd) # n_embd: input embedding dimension
        self.position_embedding_table = nn.Embedding(decoder_block_size, n_embd)
        self.blocks = nn.Sequential(*[decoderBlock(n_embd, n_head=n_head, dropout=dropout) for _ in range(n_layers)])
        self.ln_f = nn.LayerNorm(n_embd) # final layer norm
        self.lm_head = nn.Linear(n_embd, output_vocab_size)

    def forward(self, idx, encoder_output, targets=None):
        B, T = idx.shape

        tok_emb = self.token_embedding_table(idx) # (B,T,n_embd)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,n_embd)
        x = tok_emb + pos_emb # (B,T,n_embd)

        x =self.blocks((x, encoder_output))
        x = self.ln_f(x[0]) # (B,T,C)
        logits = self.lm_head(x) # (B,T,output_vocab_size)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            temp_logits = logits.view(B*T, C)
            targets = targets.reshape(B*T)

            loss = F.cross_entropy(temp_logits, targets.long())

        # print(logits)
        # out = torch.argmax(logits)

        return logits, loss