Spaces:
Running
Running
File size: 14,999 Bytes
9e582c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import time
import argparse
random.seed()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Language Model
SOS_token = 0
EOS_token = 1
class Language:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {SOS_token: "<", EOS_token: ">"}
self.n_chars = 2 # Count SOS and EOS
def addWord(self, word):
for char in word:
self.addChar(char)
def addChar(self, char):
if char not in self.word2index:
self.word2index[char] = self.n_chars
self.word2count[char] = 1
self.index2word[self.n_chars] = char
self.n_chars += 1
else:
self.word2count[char] += 1
def get_data(lang: str, type: str) -> list[list[str]]:
"""
Returns: 'pairs': list of [input_word, target_word] pairs
"""
path = "./aksharantar_sampled/{}/{}_{}.csv".format(lang, lang, type)
df = pd.read_csv(path, header=None)
pairs = df.values.tolist()
return pairs
def get_languages(lang: str):
"""
Returns
1. input_lang: input language - English
2. output_lang: output language - Given language
3. pairs: list of [input_word, target_word] pairs
"""
input_lang = Language('eng')
output_lang = Language(lang)
pairs = get_data(lang, "train")
for pair in pairs:
input_lang.addWord(pair[0])
output_lang.addWord(pair[1])
return input_lang, output_lang, pairs
def get_cell(cell_type: str):
if cell_type == "LSTM":
return nn.LSTM
elif cell_type == "GRU":
return nn.GRU
elif cell_type == "RNN":
return nn.RNN
else:
raise Exception("Invalid cell type")
def get_optimizer(optimizer: str):
if optimizer == "SGD":
return optim.SGD
elif optimizer == "ADAM":
return optim.Adam
else:
raise Exception("Invalid optimizer")
class Encoder(nn.Module):
def __init__(self,
in_sz: int,
embed_sz: int,
hidden_sz: int,
cell_type: str,
n_layers: int,
dropout: float):
super(Encoder, self).__init__()
self.hidden_sz = hidden_sz
self.n_layers = n_layers
self.dropout = dropout
self.cell_type = cell_type
self.embedding = nn.Embedding(in_sz, embed_sz)
self.rnn = get_cell(cell_type)(input_size = embed_sz,
hidden_size = hidden_sz,
num_layers = n_layers,
dropout = dropout)
def forward(self, input, hidden, cell):
embedded = self.embedding(input).view(1, 1, -1)
if(self.cell_type == "LSTM"):
output, (hidden, cell) = self.rnn(embedded, (hidden, cell))
else:
output, hidden = self.rnn(embedded, hidden)
return output, hidden, cell
def initHidden(self):
return torch.zeros(self.n_layers, 1, self.hidden_sz, device=device)
class AttentionDecoder(nn.Module):
def __init__(self,
out_sz: int,
embed_sz: int,
hidden_sz: int,
cell_type: str,
n_layers: int,
dropout: float):
super(AttentionDecoder, self).__init__()
self.hidden_sz = hidden_sz
self.n_layers = n_layers
self.dropout = dropout
self.cell_type = cell_type
self.embedding = nn.Embedding(out_sz, embed_sz)
self.attn = nn.Linear(hidden_sz + embed_sz, 50)
self.attn_combine = nn.Linear(hidden_sz + embed_sz, hidden_sz)
self.rnn = get_cell(cell_type)(input_size = hidden_sz,
hidden_size = hidden_sz,
num_layers = n_layers,
dropout = dropout)
self.out = nn.Linear(hidden_sz, out_sz)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden, cell, encoder_outputs):
embedding = self.embedding(input).view(1, 1, -1)
attn_weights = F.softmax(self.attn(torch.cat((embedding[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0))
output = torch.cat((embedding[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
if(self.cell_type == "LSTM"):
output, (hidden, cell) = self.rnn(output, (hidden, cell))
else:
output, hidden = self.rnn(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden, cell, attn_weights
def initHidden(self):
return torch.zeros(self.n_layers, 1, self.hidden_sz, device=device)
def indexesFromWord(lang:Language, word:str):
return [lang.word2index[char] for char in word]
def tensorFromWord(lang:Language, word:str):
indexes = indexesFromWord(lang, word)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(input_lang:Language, output_lang:Language, pair:list[str]):
input_tensor = tensorFromWord(input_lang, pair[0])
target_tensor = tensorFromWord(output_lang, pair[1])
return (input_tensor, target_tensor)
def params_definition():
"""
params:
embed_size : size of embedding (input and output) (8, 16, 32, 64)
hidden_size : size of hidden layer (64, 128, 256, 512)
cell_type : type of cell (LSTM, GRU, RNN)
num_layers : number of layers in encoder (1, 2, 3)
dropout : dropout probability
learning_rate : learning rate
teacher_forcing_ratio : teacher forcing ratio (0.5 fixed for now)
optimizer : optimizer (SGD, Adam)
max_length : maximum length of input word (50 fixed for now)
"""
pass
PRINT_EVERY = 5000
PLOT_EVERY = 100
class Translator:
def __init__(self, lang: str, params: dict):
self.lang = lang
self.input_lang, self.output_lang, self.pairs = get_languages(self.lang)
self.input_size = self.input_lang.n_chars
self.output_size = self.output_lang.n_chars
self.training_pairs = [tensorsFromPair(self.input_lang, self.output_lang, pair) for pair in self.pairs]
self.encoder = Encoder(in_sz = self.input_size,
embed_sz = params["embed_size"],
hidden_sz = params["hidden_size"],
cell_type = params["cell_type"],
n_layers = params["num_layers"],
dropout = params["dropout"]).to(device)
self.decoder = AttentionDecoder(out_sz = self.output_size,
embed_sz = params["embed_size"],
hidden_sz = params["hidden_size"],
cell_type = params["cell_type"],
n_layers = params["num_layers"],
dropout = params["dropout"]).to(device)
self.encoder_optimizer = get_optimizer(params["optimizer"])(self.encoder.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
self.decoder_optimizer = get_optimizer(params["optimizer"])(self.decoder.parameters(), lr=params["learning_rate"], weight_decay=params["weight_decay"])
self.criterion = nn.NLLLoss()
self.teacher_forcing_ratio = params["teacher_forcing_ratio"]
self.max_length = params["max_length"]
def train_single(self, input_tensor, target_tensor):
encoder_hidden = self.encoder.initHidden()
encoder_cell = self.encoder.initHidden()
self.encoder_optimizer.zero_grad()
self.decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(self.max_length, self.encoder.hidden_sz, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden, encoder_cell = self.encoder(input_tensor[ei], encoder_hidden, encoder_cell)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden, decoder_cell = encoder_hidden, encoder_cell
use_teacher_forcing = True if random.random() < self.teacher_forcing_ratio else False
if use_teacher_forcing:
for di in range(target_length):
decoder_output, decoder_hidden, decoder_cell, decoder_attention = self.decoder(decoder_input, decoder_hidden, decoder_cell, encoder_outputs)
loss += self.criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di]
else:
for di in range(target_length):
decoder_output, decoder_hidden, decoder_cell, decoder_attention = self.decoder(decoder_input, decoder_hidden, decoder_cell, encoder_outputs)
loss += self.criterion(decoder_output, target_tensor[di])
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach()
if decoder_input.item() == EOS_token:
break
loss.backward()
self.encoder_optimizer.step()
self.decoder_optimizer.step()
return loss.item() / target_length
def train(self, iters=-1):
start_time = time.time()
plot_losses = []
print_loss_total = 0
plot_loss_total = 0
random.shuffle(self.training_pairs)
iters = len(self.training_pairs) if iters == -1 else iters
for iter in range(1, iters):
training_pair = self.training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = self.train_single(input_tensor, target_tensor)
print_loss_total += loss
plot_loss_total += loss
if iter % PRINT_EVERY == 0:
print_loss_avg = print_loss_total / PRINT_EVERY
print_loss_total = 0
current_time = time.time()
print("Loss: {:.4f} | Iterations: {} | Time: {:.3f}".format(print_loss_avg, iter, current_time - start_time))
if iter % PLOT_EVERY == 0:
plot_loss_avg = plot_loss_total / PLOT_EVERY
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
return plot_losses
def evaluate(self, word):
with torch.no_grad():
input_tensor = tensorFromWord(self.input_lang, word)
input_length = input_tensor.size()[0]
encoder_hidden = self.encoder.initHidden()
encoder_cell = self.encoder.initHidden()
encoder_outputs = torch.zeros(self.max_length, self.encoder.hidden_sz, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden, encoder_cell = self.encoder(input_tensor[ei], encoder_hidden, encoder_cell)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden, decoder_cell = encoder_hidden, encoder_cell
decoded_chars = ""
decoder_attentions = torch.zeros(self.max_length, self.max_length)
for di in range(self.max_length):
decoder_output, decoder_hidden, decoder_cell, decoder_attention = self.decoder(decoder_input, decoder_hidden, decoder_cell, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.topk(1)
if topi.item() == EOS_token:
break
else:
decoded_chars += self.output_lang.index2word[topi.item()]
decoder_input = topi.squeeze().detach()
return decoded_chars, decoder_attentions[:di + 1]
def test_validate(self, type:str):
pairs = get_data(self.lang, type)
accuracy = 0
for pair in pairs:
output, _ = self.evaluate(pair[0])
if output == pair[1]:
accuracy += 1
return accuracy / len(pairs)
params = {
"embed_size": 32,
"hidden_size": 256,
"cell_type": "RNN",
"num_layers": 2,
"dropout": 0,
"learning_rate": 0.001,
"optimizer": "SGD",
"teacher_forcing_ratio": 0.5,
"max_length": 50,
"weight_decay": 0.001
}
language = "tam"
parser = argparse.ArgumentParser(description="Transliteration Model with Attention")
parser.add_argument('-es', '--embed_size', type=int, default=32, help='Embedding size')
parser.add_argument('-hs', '--hidden_size', type=int, default=256, help='Hidden size')
parser.add_argument('-ct', '--cell_type', type=str, default='RNN', help='Cell type')
parser.add_argument('-nl', '--num_layers', type=int, default=2, help='Number of layers')
parser.add_argument('-dr', '--dropout', type=float, default=0, help='Dropout')
parser.add_argument('-lr', '--learning_rate', type=float, default=0.001, help='Learning rate')
parser.add_argument('-op', '--optimizer', type=str, default='SGD', help='Optimizer')
parser.add_argument('-wd', '--weight_decay', type=float, default=0.001, help='Weight decay')
parser.add_argument('-l', '--lang', type=str, default='tam', help='Language')
args = parser.parse_args()
for arg in vars(args):
params[arg] = getattr(args, arg)
language = args.lang
print("Language: {}".format(language))
print("Embedding size: {}".format(params['embed_size']))
print("Hidden size: {}".format(params['hidden_size']))
print("Cell type: {}".format(params['cell_type']))
print("Number of layers: {}".format(params['num_layers']))
print("Dropout: {}".format(params['dropout']))
print("Learning rate: {}".format(params['learning_rate']))
print("Optimizer: {}".format(params['optimizer']))
print("Weight decay: {}".format(params['weight_decay']))
print("Teacher forcing ratio: {}".format(params['teacher_forcing_ratio']))
print("Max length: {}".format(params['max_length']))
model = Translator(language, params)
epochs = 10
for epoch in range(epochs):
print("Epoch: {}".format(epoch + 1))
model.train()
train_accuracy = model.test_validate('train')
print("Training Accuracy: {:.4f}".format(train_accuracy))
validation_accuracy = model.test_validate('valid')
print("Validation Accuracy: {:.4f}".format(validation_accuracy))
test_accuracy = model.test_validate('test')
print("Test Accuracy: {:.4f}".format(test_accuracy)) |