Spaces:
Running
Running
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from inference.language import Language | |
from inference.utility import Encoder, Decoder, encoderBlock, decoderBlock, MultiHeadAttention, Head, FeedForward | |
from inference.transformer import generate | |
from typing import List | |
import uvicorn | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Create a request model to define the input for the transliteration pipeline | |
class TransRequest(BaseModel): | |
query: str | |
# Create a response model to define the output of the RAG pipeline | |
class TransResponse(BaseModel): | |
response: List[str] | |
# Define a FastAPI endpoint for transliteration pipeline | |
async def get_transliteration(request: TransRequest): | |
try: | |
# Call the RAG pipeline function with the query | |
input = request.query.split(" ") | |
result = generate(input) | |
return TransResponse( | |
response=result | |
) | |
except Exception as e: | |
# In case of an error, return an HTTPException with a 500 status code | |
raise HTTPException(status_code=500, detail=str(e)) | |
# Run the FastAPI application (for local testing) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="127.0.0.1", port=8000) | |