import gradio as gr import subprocess import pandas as pd ''' import gradio as gr def greet(name): return "Hello " + name + "!" demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch() ''' def greet(name1, name2): # Storing each input in a variable, you can process or save them as you like str1_openai = name1 ## openai str2_bioportal = "213e22ba-4c3b-402b-bd36-6e9d4e86b1b5" #bioportal str3_huggingface = "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" # huggingface str4_input = name2 with open('abstractsave.txt', 'w') as f: f.write(str4_input) def run_command(command): result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) output_string = result.stdout error_string = result.stderr return output_string, error_string ##### output_string1, error_string1= run_command("pip install optogpt") output_string1, error_string1 = run_command("curl -sSL https://install.python-poetry.org | python3 -") output_string2, error_string2 = run_command(f"poetry run runoak set-apikey -e openai {str1_openai}") run_command(f"poetry run runoak set-apikey -e bioportal {str2_bioportal}") run_command(f"poetry run runoak set-apikey -e hfhub-key {str3_huggingface}") ##### output = run_command(f"ontogpt extract -t gocam.GoCamAnnotations -i ./abstract.txt") output = run_command(f"cancerontogpt extract -t cancer.CancerAnnotations -i ./abstractsave.txt") output = output[0].replace('\\n', '\n') # Find the positions of the start and end markers start_marker = "raw_completion_output: |-" end_marker = "prompt: " start_position = output.find(start_marker) end_position = output.find(end_marker) # Extract the text between the start and end positions output = output[start_position + len(start_marker):end_position].strip() # Splitting the data string into lines and then split each line into key-value pairs key_value_pairs = [line.split(": ", 1) for line in output.split("\n")[1:] if line.strip()] def format_identifier(identifier: str) -> str: # Split the string by underscores words = identifier.strip().split('_') # Capitalize each word capitalized_words = [word.capitalize() for word in words] # Join the words with spaces formatted_identifier = ' '.join(capitalized_words) return formatted_identifier key_value_pairs = [[format_identifier(x[0]), *x[1:]] for x in key_value_pairs] # Convert the key-value pairs into a table format (a list of lists) df_pred = pd.DataFrame(key_value_pairs, columns = ["Ontology Attribute", "Value"]).iloc[:19,:] # data = { # "Name": ['fawef', 'fseaf', 'asef'], # "Age": [30, 25, 35], # "City": ["New York", "San Francisco", "Los Angeles"] # } # df = pd.DataFrame(data) return df_pred.to_html() #### output_string1, error_string1=run_command("poetry")# ontogpt") # return location # For the purpose of this example, I'm just returning the values concatenated # return f"Inputs received: {str1} \n, {str2}, {str3}, {str4}, '--------------', '--------------', {output_string1},{error_string1},{output_string2},{error_string2},{output}" # # return location # For the purpose of this example, I'm just returning the values concatenated # return f"{str4_input}" # Define 5 text input boxes with labels input_boxes = [ gr.inputs.Textbox(label="openai api key"), gr.inputs.Textbox(lines=20, label="Input cencer report", placeholder='Type text here...'), ] # iface = gr.Interface(fn=greet, inputs=input_boxes, outputs="text") iface = gr.Interface(fn=greet, inputs=input_boxes, outputs=gr.outputs.HTML(label="Output Table"),examples=[ # Sample text examples ["this is a sample text"], ["gradio is great"] ]) iface.launch()