File size: 3,353 Bytes
84c8417 e17dd58 5255e11 84c8417 5255e11 84c8417 5255e11 e17dd58 84c8417 e17dd58 84c8417 3282136 84c8417 ca1a8b4 84c8417 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# import whisper
# from pytube import YouTube
# from transformers import pipeline
# import gradio as gr
# import os
# from speechbrain.inference.ASR import EncoderASR
# import gradio as gr
# model = EncoderASR.from_hparams("speechbrain/asr-wav2vec2-dvoice-wolof")
# #model = whisper.load_model("base")
# summarizer = pipeline("summarization")
# def get_audio(url):
# yt = YouTube(url)
# video = yt.streams.filter(only_audio=True).first()
# out_file=video.download(output_path=".")
# base, ext = os.path.splitext(out_file)
# new_file = base+'.mp3'
# os.rename(out_file, new_file)
# a = new_file
# return a
# def get_text(url):
# result = model.transcribe(get_audio(url))
# return result['text']
# def get_summary(url):
# article = get_text(url)
# b = summarizer(article)
# b = b[0]['summary_text']
# return b
# with gr.Blocks() as demo:
# gr.Markdown("<h1><center>Youtube video transcription with in wolof by Papa Sega</center></h1>")
# gr.Markdown("<center>Enter the link of any youtube video to get the transcription of the video and a summary of the video in the form of text.</center>")
# with gr.Tab('Get the transcription of any Youtube video'):
# with gr.Row():
# input_text_1 = gr.Textbox(placeholder='Enter the Youtube video URL', label='URL')
# output_text_1 = gr.Textbox(placeholder='Transcription of the video', label='Transcription')
# result_button_1 = gr.Button('Get Transcription')
# with gr.Tab('Summary of Youtube video'):
# with gr.Row():
# input_text = gr.Textbox(placeholder='Enter the Youtube video URL', label='URL')
# output_text = gr.Textbox(placeholder='Summary text of the Youtube Video', label='Summary')
# result_button = gr.Button('Get Summary')
# result_button.click(get_summary, inputs = input_text, outputs = output_text)
# result_button_1.click(get_text, inputs = input_text_1, outputs = output_text_1)
# demo.launch(debug=True)
from pytube import YouTube
from speechbrain.inference.ASR import EncoderASR
import gradio as gr
import os
# Charger le modèle EncoderASR
model = EncoderASR.from_hparams("speechbrain/asr-wav2vec2-dvoice-wolof")
def get_audio(url):
yt = YouTube(url)
video = yt.streams.filter(only_audio=True).first()
out_file = video.download(output_path=".")
base, ext = os.path.splitext(out_file)
new_file = base+'.mp3'
os.rename(out_file, new_file)
return new_file
def get_text(url):
audio_file = get_audio(url)
result = model.transcribe_file(audio_file)
os.remove(audio_file) # Supprimer le fichier audio temporaire
# Ajout d'un débogage pour vérifier la structure de 'result'
print(f"Transcription result: {result}")
# Si result est une chaîne de caractères, la retourner directement
if isinstance(result, str):
return result
# Sinon, retourner la valeur associée à la clé 'text'
return result.get('text', 'Transcription failed')
demo = gr.Interface(
get_text,
inputs=gr.Textbox(placeholder='Enter the Youtube video URL', label='URL'),
outputs=gr.Textbox(placeholder='Transcription of the video', label='Transcription'),
title="Youtube Video Transcription in Wolof by Papa Sega",
description="Enter the link of any Youtube video to get the transcription of the video in Wolof.",
)
demo.launch(debug=True)
|