File size: 1,532 Bytes
72e82be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import os
import torch

from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict

class_names = ['pizza', 'steak', 'sushi']

effnetb2, effnetb2_transforms = create_effnetb2_model(
    num_classes=3
)

effnetb2.load_state_dict(
    torch.load(
        f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pt",
        map_location=torch.device('cpu'),
    )
)

def predict(img) -> Tuple[Dict, float]:
    start_time = timer()

    img = effnetb2_transforms(img).unsqueeze(0)

    effnetb2.eval()
    with torch.inference_mode():
        pred_probs = torch.softmax(effnetb2(img), dim=1)

    pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}

    pred_time = round(timer() - start_time, 5)

    return pred_labels_and_probs, pred_time

title = "FoodVision Mini"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food."
article = "Created at pytorch tutorial."

example_list = [["examples/" + example] for example in os.listdir("examples")]

demo = gr.Interface(fn=predict,
                    inputs=gr.Image(type="pil"),
                    outputs=[gr.Label(num_top_classes=3, label="Predictions"),
                             gr.Number(label="Prediction time (s)")],
                    examples=example_list,
                    title=title,
                    description=description,
                    article=article)

demo.launch()