import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image processor = TrOCRProcessor.from_pretrained("paran3xus/typress_ocr") model = VisionEncoderDecoderModel.from_pretrained('paran3xus/typress_ocr') # load image examples urls = ["https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/1.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/2.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/3.png"] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") def process_image(image): # prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "Interactive demo: Typress OCR" description = "Demo for Typress OCR, an TrOCR model for Typst Mathematical Expressions Recognition. To use it, simply upload a image or use one of the example images below and click 'submit'. Results will show up in a few seconds." article = "

Github Repo

" examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] iface = gr.Interface(fn=process_image, inputs=gr.Image(type="pil"), outputs=gr.Textbox(), title=title, description=description, article=article, examples=examples) iface.launch(debug=True)