Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,49 @@ warnings.filterwarnings("ignore")
|
|
10 |
from langchain.document_loaders import TextLoader
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
loader = TextLoader("/content/drive/MyDrive/Intelli_GenAI/RAG/Machine Learning Operations.txt")
|
15 |
documents = loader.load()
|
|
|
10 |
from langchain.document_loaders import TextLoader
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain.vectorstores import Pinecone as PineconeVectorStore
|
14 |
+
from langchain.llms import HuggingFaceHub
|
15 |
+
from langchain import PromptTemplate
|
16 |
+
from langchain.schema.runnable import RunnablePassthrough
|
17 |
+
from langchain.schema.output_parser import StrOutputParser
|
18 |
+
|
19 |
+
|
20 |
+
from pinecone import Pinecone, ServerlessSpec
|
21 |
+
pc = Pinecone(api_key=keyfile.PINECONE_API_KEY)
|
22 |
+
os.environ["PINECONE_API_KEY"] = keyfile.PINECONE_API_KEY
|
23 |
+
|
24 |
+
|
25 |
+
cloud = os.environ.get("PINECONE_CLOUD") or "aws"
|
26 |
+
region = os.environ.get("PINECONE_REGION") or "us-east-1"
|
27 |
+
serv = ServerlessSpec(cloud = cloud, region = region)
|
28 |
+
|
29 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
30 |
+
llm = HuggingFaceHub(
|
31 |
+
repo_id = model_id,
|
32 |
+
model_kwargs = {"temperature" : 0.8, "top_k" : 50},
|
33 |
+
huggingfacehub_api_token = userdata.get("HFToken")
|
34 |
+
)
|
35 |
+
|
36 |
+
index_name = "parasgupta"
|
37 |
+
# We are check if the name of our index is not existing in pinecone directory
|
38 |
+
if index_name not in pc.list_indexes().names():
|
39 |
+
# if not then we will create a index for us
|
40 |
+
pc.create_index(
|
41 |
+
name = index_name,
|
42 |
+
dimension = 768,
|
43 |
+
metric = "cosine",
|
44 |
+
spec = serv
|
45 |
+
)
|
46 |
+
while not pc.describe_index(index_name).status['ready']:
|
47 |
+
time.sleep(1)
|
48 |
+
# IF the index is not there in the index list
|
49 |
+
if index_name not in pc.list_indexes():
|
50 |
+
docsearch = PineconeVectorStore.from_documents(docs, embeddings, index_name = index_name)
|
51 |
+
else:
|
52 |
+
docsearch = PineconeVectorStore.from_existing_index(index_name, embeddings, pinecone_index = pc.Index(index_name))
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
|
57 |
loader = TextLoader("/content/drive/MyDrive/Intelli_GenAI/RAG/Machine Learning Operations.txt")
|
58 |
documents = loader.load()
|