Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generics
|
2 |
+
import os
|
3 |
+
import keyfile
|
4 |
+
import warnings
|
5 |
+
import streamlit as st
|
6 |
+
from pydantic import BaseModel
|
7 |
+
warnings.filterwarnings("ignore")
|
8 |
+
|
9 |
+
# Langchain packages
|
10 |
+
from langchain.document_loaders import TextLoader
|
11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
|
14 |
+
loader = TextLoader("/content/drive/MyDrive/Intelli_GenAI/RAG/Machine Learning Operations.txt")
|
15 |
+
documents = loader.load()
|
16 |
+
text_splitter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap = 4)
|
17 |
+
docs = text_splitter.split_documents(documents)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
class AIMessage(BaseModel):
|
23 |
+
content: str
|
24 |
+
|
25 |
+
# initializing the sessionMessages
|
26 |
+
if "sessionMessages" not in st.session_state:
|
27 |
+
st.session_state["sessionMessages"] = []
|
28 |
+
# General Instruction
|
29 |
+
if "sessionMessages" not in st.session_state:
|
30 |
+
st.session_state.sessionMessage = [
|
31 |
+
SystemMessage(content = "You are a medieval magical healer known for your peculiar sarcasm")
|
32 |
+
]
|
33 |
+
|
34 |
+
# Configuring the key
|
35 |
+
os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY
|
36 |
+
|
37 |
+
# Create a model
|
38 |
+
llm = ChatGoogleGenerativeAI(
|
39 |
+
model="gemini-1.5-pro",
|
40 |
+
temperature=0.7,
|
41 |
+
convert_system_message_to_human= True
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
# Response function
|
46 |
+
def load_answer(question):
|
47 |
+
st.session_state.sessionMessages.append(HumanMessage(content=question))
|
48 |
+
assistant_response = llm.invoke(st.session_state.sessionMessages)
|
49 |
+
|
50 |
+
# Assuming assistant_response is an object with a 'content' attribute
|
51 |
+
if hasattr(assistant_response, 'content') and isinstance(assistant_response.content, str):
|
52 |
+
processed_content = assistant_response.content
|
53 |
+
st.session_state.sessionMessages.append(AIMessage(content=processed_content))
|
54 |
+
else:
|
55 |
+
st.error("Invalid response received from AI.")
|
56 |
+
processed_content = "Sorry, I couldn't process your request."
|
57 |
+
|
58 |
+
return processed_content
|
59 |
+
|
60 |
+
# def load_answer(question):
|
61 |
+
# st.session_state.sessionMessages.append(HumanMessage(content = question))
|
62 |
+
# assistant_answer = llm.invoke(st.session_state.sessionMessages)
|
63 |
+
# st.session_state.sessionMessages.append(AIMessage(content = assistant_answer))
|
64 |
+
# return assistant_answer.content
|
65 |
+
|
66 |
+
# User message
|
67 |
+
def get_text():
|
68 |
+
input_text = st.text_input("You: ", key = input)
|
69 |
+
return input_text
|
70 |
+
|
71 |
+
|
72 |
+
# Implementation
|
73 |
+
user_input = get_text()
|
74 |
+
submit = st.button("Generate")
|
75 |
+
|
76 |
+
if submit:
|
77 |
+
resp = load_answer(user_input)
|
78 |
+
st.subheader("Answer: ")
|
79 |
+
st.write(resp, key = 1)
|