# Generics import os import keyfile import warnings import streamlit as st from pydantic import BaseModel warnings.filterwarnings("ignore") # Langchain packages from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Pinecone as PineconeVectorStore from langchain.llms import HuggingFaceHub from langchain import PromptTemplate from langchain.schema.runnable import RunnablePassthrough from langchain.schema.output_parser import StrOutputParser from pinecone import Pinecone, ServerlessSpec pc = Pinecone(api_key=keyfile.PINECONE_API_KEY) os.environ["PINECONE_API_KEY"] = keyfile.PINECONE_API_KEY cloud = os.environ.get("PINECONE_CLOUD") or "aws" region = os.environ.get("PINECONE_REGION") or "us-east-1" serv = ServerlessSpec(cloud = cloud, region = region) model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" llm = HuggingFaceHub( repo_id = model_id, model_kwargs = {"temperature" : 0.8, "top_k" : 50}, huggingfacehub_api_token = userdata.get("HFToken") ) index_name = "parasgupta" # We are check if the name of our index is not existing in pinecone directory if index_name not in pc.list_indexes().names(): # if not then we will create a index for us pc.create_index( name = index_name, dimension = 768, metric = "cosine", spec = serv ) while not pc.describe_index(index_name).status['ready']: time.sleep(1) # IF the index is not there in the index list if index_name not in pc.list_indexes(): docsearch = PineconeVectorStore.from_documents(docs, embeddings, index_name = index_name) else: docsearch = PineconeVectorStore.from_existing_index(index_name, embeddings, pinecone_index = pc.Index(index_name)) loader = TextLoader("/content/drive/MyDrive/Intelli_GenAI/RAG/Machine Learning Operations.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size = 1000, chunk_overlap = 4) docs = text_splitter.split_documents(documents) class AIMessage(BaseModel): content: str # initializing the sessionMessages if "sessionMessages" not in st.session_state: st.session_state["sessionMessages"] = [] # General Instruction if "sessionMessages" not in st.session_state: st.session_state.sessionMessage = [ SystemMessage(content = "You are a medieval magical healer known for your peculiar sarcasm") ] # Configuring the key os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY # Create a model llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro", temperature=0.7, convert_system_message_to_human= True ) # Response function def load_answer(question): st.session_state.sessionMessages.append(HumanMessage(content=question)) assistant_response = llm.invoke(st.session_state.sessionMessages) # Assuming assistant_response is an object with a 'content' attribute if hasattr(assistant_response, 'content') and isinstance(assistant_response.content, str): processed_content = assistant_response.content st.session_state.sessionMessages.append(AIMessage(content=processed_content)) else: st.error("Invalid response received from AI.") processed_content = "Sorry, I couldn't process your request." return processed_content # def load_answer(question): # st.session_state.sessionMessages.append(HumanMessage(content = question)) # assistant_answer = llm.invoke(st.session_state.sessionMessages) # st.session_state.sessionMessages.append(AIMessage(content = assistant_answer)) # return assistant_answer.content # User message def get_text(): input_text = st.text_input("You: ", key = input) return input_text # Implementation user_input = get_text() submit = st.button("Generate") if submit: resp = load_answer(user_input) st.subheader("Answer: ") st.write(resp, key = 1)