parasmech commited on
Commit
408dfd4
·
verified ·
1 Parent(s): bafa6f7

Update backend.py

Browse files
Files changed (1) hide show
  1. backend.py +5 -7
backend.py CHANGED
@@ -7,7 +7,7 @@ from langchain.prompts import PromptTemplate
7
  from langchain_google_genai import GoogleGenerativeAI
8
 
9
 
10
- os.environ["GOOGLE_API_KEY"] = "AIzaSyCYGj5e2eAQbUi9HtuMaW0LDSnDuxLG54U"
11
 
12
 
13
  class InvoicePipeline:
@@ -19,14 +19,14 @@ class InvoicePipeline:
19
  # This funcition will help in extracting and run the code, and will produce a dataframe for us
20
  def run(self) -> pd.DataFrame:
21
  # We have defined the way the data has to be returned
22
- df = pd.DataFrame(
23
  "Invoice ID": pd.Series(dtype = "int"),
24
  "DESCRIPTION": pd.Series(dtype = "str"),
25
  "Issue Data": pd.Series(dtype = "str"),
26
  "UNIT PRICE": pd.Series(dtype = "str"),
27
  "AMOUNT": pd.Series(dtype = "int"),
28
  "Bill For": pd.Series(dtype = "str"),
29
- "From": pd.Series(dtype =" str"),
30
  "Terms": pd.Series(dtype = "str")}
31
  )
32
 
@@ -41,7 +41,7 @@ class InvoicePipeline:
41
  # The default template that the machine will take
42
  def _get_default_prompt_template(self) -> PromptTemplate:
43
  template = """Extract all the following values: Invoice ID, DESCRIPTION, Issue Data,UNIT PRICE, AMOUNT, Bill for, From and Terms for: {pages}
44
- Expected Outcome: remove any dollar symbols {{"Invoice ID":"12341234", "DESCRIPTION": "UNIT PRICE", "AMOUNT": "3", "Date": "2/1/2021", "AMOUNT": "100", "Bill For": "Paras", "From": "Coca Cola", "Terms" : "Net for 30 days"}}
45
  """
46
 
47
  prompt_template = PromptTemplate(input_variables = ["pages"], template = template)
@@ -58,6 +58,4 @@ class InvoicePipeline:
58
 
59
  def _extract_data_from_llm(self, raw_data:str) -> str:
60
  resp = self._llm(self._prompt_template.format(pages = raw_data))
61
- return resp
62
-
63
-
 
7
  from langchain_google_genai import GoogleGenerativeAI
8
 
9
 
10
+ api_key = "AIzaSyCYGj5e2eAQbUi9HtuMaW0LDSnDuxLG54U"
11
 
12
 
13
  class InvoicePipeline:
 
19
  # This funcition will help in extracting and run the code, and will produce a dataframe for us
20
  def run(self) -> pd.DataFrame:
21
  # We have defined the way the data has to be returned
22
+ df = pd.DataFrame({
23
  "Invoice ID": pd.Series(dtype = "int"),
24
  "DESCRIPTION": pd.Series(dtype = "str"),
25
  "Issue Data": pd.Series(dtype = "str"),
26
  "UNIT PRICE": pd.Series(dtype = "str"),
27
  "AMOUNT": pd.Series(dtype = "int"),
28
  "Bill For": pd.Series(dtype = "str"),
29
+ "From": pd.Series(dtype ="str"),
30
  "Terms": pd.Series(dtype = "str")}
31
  )
32
 
 
41
  # The default template that the machine will take
42
  def _get_default_prompt_template(self) -> PromptTemplate:
43
  template = """Extract all the following values: Invoice ID, DESCRIPTION, Issue Data,UNIT PRICE, AMOUNT, Bill for, From and Terms for: {pages}
44
+ Expected Outcome: remove any dollar symbols {{"Invoice ID":"12341234", "DESCRIPTION": "UNIT PRICE", "AMOUNT": "3", "Date": "2/1/2021", "AMOUNT": "100", "Bill For": "Dev", "From": "Coca Cola", "Terms" : "Net for 30 days"}}
45
  """
46
 
47
  prompt_template = PromptTemplate(input_variables = ["pages"], template = template)
 
58
 
59
  def _extract_data_from_llm(self, raw_data:str) -> str:
60
  resp = self._llm(self._prompt_template.format(pages = raw_data))
61
+ return resp