parkchihoon commited on
Commit
ae1b4f7
·
1 Parent(s): dbdf3a2

first commit

Browse files
README.md CHANGED
@@ -1,86 +1,12 @@
1
  ---
2
- license: other
3
- tags:
4
- - vision
5
- - image-segmentation
6
- datasets:
7
- - scene_parse_150
8
- widget:
9
- - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
10
- example_title: House
11
- - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
12
- example_title: Castle
13
- title: My_model
14
  emoji: 👀
15
  colorFrom: red
16
  colorTo: blue
17
  sdk: gradio
18
  sdk_version: 3.44.4
19
- app_file: pytorch_model.bin
20
  pinned: false
21
-
22
  ---
23
 
24
- # SegFormer (b0-sized) model fine-tuned on ADE20k
25
-
26
- SegFormer model fine-tuned on ADE20k at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
27
-
28
- Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
29
-
30
- ## Model description
31
-
32
- SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
33
-
34
- ## Intended uses & limitations
35
-
36
- You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
37
-
38
- ### How to use
39
-
40
- Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
41
-
42
- ```python
43
- from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
44
- from PIL import Image
45
- import requests
46
-
47
- processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
48
- model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
49
-
50
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
51
- image = Image.open(requests.get(url, stream=True).raw)
52
-
53
- inputs = feature_extractor(images=image, return_tensors="pt")
54
- outputs = model(**inputs)
55
- logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
56
- ```
57
-
58
- For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
59
-
60
- ### License
61
-
62
- The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
63
-
64
- ### BibTeX entry and citation info
65
-
66
- ```bibtex
67
- @article{DBLP:journals/corr/abs-2105-15203,
68
- author = {Enze Xie and
69
- Wenhai Wang and
70
- Zhiding Yu and
71
- Anima Anandkumar and
72
- Jose M. Alvarez and
73
- Ping Luo},
74
- title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
75
- Transformers},
76
- journal = {CoRR},
77
- volume = {abs/2105.15203},
78
- year = {2021},
79
- url = {https://arxiv.org/abs/2105.15203},
80
- eprinttype = {arXiv},
81
- eprint = {2105.15203},
82
- timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
83
- biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
84
- bibsource = {dblp computer science bibliography, https://dblp.org}
85
- }
86
- ```
 
1
  ---
2
+ title: Segmentation
 
 
 
 
 
 
 
 
 
 
 
3
  emoji: 👀
4
  colorFrom: red
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 3.44.4
8
+ app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b3-finetuned-cityscapes-1024-1024"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [204, 87, 92],
21
+ [112, 185, 212],
22
+ [45, 189, 106],
23
+ [234, 123, 67],
24
+ [78, 56, 123],
25
+ [210, 32, 89],
26
+ [90, 180, 56],
27
+ [155, 102, 200],
28
+ [33, 147, 176],
29
+ [255, 183, 76],
30
+ [67, 123, 89],
31
+ [190, 60, 45],
32
+ [134, 112, 200],
33
+ [56, 45, 189],
34
+ [200, 56, 123],
35
+ [87, 92, 204],
36
+ [120, 56, 123],
37
+ [45, 78, 123],
38
+ [156, 200, 56],
39
+ [32, 90, 210],
40
+ [56, 123, 67],
41
+ [180, 56, 123],
42
+ [123, 67, 45],
43
+ [45, 134, 200],
44
+ [67, 56, 123],
45
+ [78, 123, 67],
46
+ [32, 210, 90],
47
+ [45, 56, 189],
48
+ [123, 56, 123],
49
+ [56, 156, 200],
50
+ [189, 56, 45],
51
+ [112, 200, 56],
52
+ [56, 123, 45],
53
+ [200, 32, 90],
54
+ [123, 45, 78],
55
+ [200, 156, 56],
56
+ [45, 67, 123],
57
+ [56, 45, 78],
58
+ [45, 56, 123],
59
+ [123, 67, 56],
60
+ [56, 78, 123],
61
+ [210, 90, 32],
62
+ [123, 56, 189],
63
+ [45, 200, 134],
64
+ [67, 123, 56],
65
+ [123, 45, 67],
66
+ [90, 32, 210],
67
+ [200, 45, 78],
68
+ [32, 210, 90],
69
+ [45, 123, 67],
70
+ [165, 42, 87],
71
+ [72, 145, 167],
72
+ [15, 158, 75],
73
+ [209, 89, 40],
74
+ [32, 21, 121],
75
+ [184, 20, 100],
76
+ [56, 135, 15],
77
+ [128, 92, 176],
78
+ [1, 119, 140],
79
+ [220, 151, 43],
80
+ [41, 97, 72],
81
+ [148, 38, 27],
82
+ [107, 86, 176],
83
+ [21, 26, 136],
84
+ [174, 27, 90],
85
+ [91, 96, 204],
86
+ [108, 50, 107],
87
+ [27, 45, 136],
88
+ [168, 200, 52],
89
+ [7, 102, 27],
90
+ [42, 93, 56],
91
+ [140, 52, 112],
92
+ [92, 107, 168],
93
+ [17, 118, 176],
94
+ [59, 50, 174],
95
+ [206, 40, 143],
96
+ [44, 19, 142],
97
+ [23, 168, 75],
98
+ [54, 57, 189],
99
+ [144, 21, 15],
100
+ [15, 176, 35],
101
+ [107, 19, 79],
102
+ [204, 52, 114],
103
+ [48, 173, 83],
104
+ [11, 120, 53],
105
+ [206, 104, 28],
106
+ [20, 31, 153],
107
+ [27, 21, 93],
108
+ [11, 206, 138],
109
+ [112, 30, 83],
110
+ [68, 91, 152],
111
+ [153, 13, 43],
112
+ [25, 114, 54],
113
+ [92, 27, 150],
114
+ [108, 42, 59],
115
+ [194, 77, 5],
116
+ [145, 48, 83],
117
+ [7, 113, 19],
118
+ [25, 92, 113],
119
+ [60, 168, 79],
120
+ [78, 33, 120],
121
+ [89, 176, 205],
122
+ [27, 200, 94],
123
+ [210, 67, 23],
124
+ [123, 89, 189],
125
+ [225, 56, 112],
126
+ [75, 156, 45],
127
+ [172, 104, 200],
128
+ [15, 170, 197],
129
+ [240, 133, 65],
130
+ [89, 156, 112],
131
+ [214, 88, 57],
132
+ [156, 134, 200],
133
+ [78, 57, 189],
134
+ [200, 78, 123],
135
+ [106, 120, 210],
136
+ [145, 56, 112],
137
+ [89, 120, 189],
138
+ [185, 206, 56],
139
+ [47, 99, 28],
140
+ [112, 189, 78],
141
+ [200, 112, 89],
142
+ [89, 145, 112],
143
+ [78, 106, 189],
144
+ [112, 78, 189],
145
+ [156, 112, 78],
146
+ [28, 210, 99],
147
+ [78, 89, 189],
148
+ [189, 78, 57],
149
+ [112, 200, 78],
150
+ [189, 47, 78],
151
+ [205, 112, 57],
152
+ [78, 145, 57],
153
+ [200, 78, 112],
154
+ [99, 89, 145],
155
+ [200, 156, 78],
156
+ [57, 78, 145],
157
+ [78, 57, 99],
158
+ [57, 78, 145],
159
+ [145, 112, 78],
160
+ [78, 89, 145],
161
+ [210, 99, 28],
162
+ [145, 78, 189],
163
+ [57, 200, 136],
164
+ [89, 156, 78],
165
+ [145, 78, 99],
166
+ [99, 28, 210],
167
+ [189, 78, 47],
168
+ [28, 210, 99],
169
+ [78, 145, 57],
170
+ ]
171
+
172
+ labels_list = []
173
+
174
+ with open(r'labels.txt', 'r') as fp:
175
+ for line in fp:
176
+ labels_list.append(line[:-1])
177
+
178
+ colormap = np.asarray(ade_palette())
179
+
180
+ def label_to_color_image(label):
181
+ if label.ndim != 2:
182
+ raise ValueError("Expect 2-D input label")
183
+
184
+ if np.max(label) >= len(colormap):
185
+ raise ValueError("label value too large.")
186
+ return colormap[label]
187
+
188
+ def draw_plot(pred_img, seg):
189
+ fig = plt.figure(figsize=(20, 15))
190
+
191
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
192
+
193
+ plt.subplot(grid_spec[0])
194
+ plt.imshow(pred_img)
195
+ plt.axis('off')
196
+ LABEL_NAMES = np.asarray(labels_list)
197
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
198
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
199
+
200
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
201
+ ax = plt.subplot(grid_spec[1])
202
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
203
+ ax.yaxis.tick_right()
204
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
205
+ plt.xticks([], [])
206
+ ax.tick_params(width=0.0, labelsize=25)
207
+ return fig
208
+
209
+ def sepia(input_img):
210
+ input_img = Image.fromarray(input_img)
211
+
212
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
213
+ outputs = model(**inputs)
214
+ logits = outputs.logits
215
+
216
+ logits = tf.transpose(logits, [0, 2, 3, 1])
217
+ logits = tf.image.resize(
218
+ logits, input_img.size[::-1]
219
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
220
+ seg = tf.math.argmax(logits, axis=-1)[0]
221
+
222
+ color_seg = np.zeros(
223
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
224
+ ) # height, width, 3
225
+ for label, color in enumerate(colormap):
226
+ color_seg[seg.numpy() == label, :] = color
227
+
228
+ # Show image + mask
229
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
230
+ pred_img = pred_img.astype(np.uint8)
231
+
232
+ fig = draw_plot(pred_img, seg)
233
+ return fig
234
+
235
+ demo = gr.Interface(fn=sepia,
236
+ inputs=gr.Image(shape=(400, 600)),
237
+ outputs=['plot'],
238
+ examples=["스크린샷(247).png"],
239
+ allow_flagging='never')
240
+
241
+
242
+ demo.launch()
config.json DELETED
@@ -1,372 +0,0 @@
1
- {
2
- "architectures": [
3
- "SegformerForSemanticSegmentation"
4
- ],
5
- "attention_probs_dropout_prob": 0.0,
6
- "classifier_dropout_prob": 0.1,
7
- "decoder_hidden_size": 256,
8
- "depths": [
9
- 2,
10
- 2,
11
- 2,
12
- 2
13
- ],
14
- "downsampling_rates": [
15
- 1,
16
- 4,
17
- 8,
18
- 16
19
- ],
20
- "drop_path_rate": 0.1,
21
- "hidden_act": "gelu",
22
- "hidden_dropout_prob": 0.0,
23
- "hidden_sizes": [
24
- 32,
25
- 64,
26
- 160,
27
- 256
28
- ],
29
- "id2label": {
30
- "0": "wall",
31
- "1": "building",
32
- "2": "sky",
33
- "3": "floor",
34
- "4": "tree",
35
- "5": "ceiling",
36
- "6": "road",
37
- "7": "bed ",
38
- "8": "windowpane",
39
- "9": "grass",
40
- "10": "cabinet",
41
- "11": "sidewalk",
42
- "12": "person",
43
- "13": "earth",
44
- "14": "door",
45
- "15": "table",
46
- "16": "mountain",
47
- "17": "plant",
48
- "18": "curtain",
49
- "19": "chair",
50
- "20": "car",
51
- "21": "water",
52
- "22": "painting",
53
- "23": "sofa",
54
- "24": "shelf",
55
- "25": "house",
56
- "26": "sea",
57
- "27": "mirror",
58
- "28": "rug",
59
- "29": "field",
60
- "30": "armchair",
61
- "31": "seat",
62
- "32": "fence",
63
- "33": "desk",
64
- "34": "rock",
65
- "35": "wardrobe",
66
- "36": "lamp",
67
- "37": "bathtub",
68
- "38": "railing",
69
- "39": "cushion",
70
- "40": "base",
71
- "41": "box",
72
- "42": "column",
73
- "43": "signboard",
74
- "44": "chest of drawers",
75
- "45": "counter",
76
- "46": "sand",
77
- "47": "sink",
78
- "48": "skyscraper",
79
- "49": "fireplace",
80
- "50": "refrigerator",
81
- "51": "grandstand",
82
- "52": "path",
83
- "53": "stairs",
84
- "54": "runway",
85
- "55": "case",
86
- "56": "pool table",
87
- "57": "pillow",
88
- "58": "screen door",
89
- "59": "stairway",
90
- "60": "river",
91
- "61": "bridge",
92
- "62": "bookcase",
93
- "63": "blind",
94
- "64": "coffee table",
95
- "65": "toilet",
96
- "66": "flower",
97
- "67": "book",
98
- "68": "hill",
99
- "69": "bench",
100
- "70": "countertop",
101
- "71": "stove",
102
- "72": "palm",
103
- "73": "kitchen island",
104
- "74": "computer",
105
- "75": "swivel chair",
106
- "76": "boat",
107
- "77": "bar",
108
- "78": "arcade machine",
109
- "79": "hovel",
110
- "80": "bus",
111
- "81": "towel",
112
- "82": "light",
113
- "83": "truck",
114
- "84": "tower",
115
- "85": "chandelier",
116
- "86": "awning",
117
- "87": "streetlight",
118
- "88": "booth",
119
- "89": "television receiver",
120
- "90": "airplane",
121
- "91": "dirt track",
122
- "92": "apparel",
123
- "93": "pole",
124
- "94": "land",
125
- "95": "bannister",
126
- "96": "escalator",
127
- "97": "ottoman",
128
- "98": "bottle",
129
- "99": "buffet",
130
- "100": "poster",
131
- "101": "stage",
132
- "102": "van",
133
- "103": "ship",
134
- "104": "fountain",
135
- "105": "conveyer belt",
136
- "106": "canopy",
137
- "107": "washer",
138
- "108": "plaything",
139
- "109": "swimming pool",
140
- "110": "stool",
141
- "111": "barrel",
142
- "112": "basket",
143
- "113": "waterfall",
144
- "114": "tent",
145
- "115": "bag",
146
- "116": "minibike",
147
- "117": "cradle",
148
- "118": "oven",
149
- "119": "ball",
150
- "120": "food",
151
- "121": "step",
152
- "122": "tank",
153
- "123": "trade name",
154
- "124": "microwave",
155
- "125": "pot",
156
- "126": "animal",
157
- "127": "bicycle",
158
- "128": "lake",
159
- "129": "dishwasher",
160
- "130": "screen",
161
- "131": "blanket",
162
- "132": "sculpture",
163
- "133": "hood",
164
- "134": "sconce",
165
- "135": "vase",
166
- "136": "traffic light",
167
- "137": "tray",
168
- "138": "ashcan",
169
- "139": "fan",
170
- "140": "pier",
171
- "141": "crt screen",
172
- "142": "plate",
173
- "143": "monitor",
174
- "144": "bulletin board",
175
- "145": "shower",
176
- "146": "radiator",
177
- "147": "glass",
178
- "148": "clock",
179
- "149": "flag"
180
- },
181
- "image_size": 224,
182
- "initializer_range": 0.02,
183
- "label2id": {
184
- "airplane": 90,
185
- "animal": 126,
186
- "apparel": 92,
187
- "arcade machine": 78,
188
- "armchair": 30,
189
- "ashcan": 138,
190
- "awning": 86,
191
- "bag": 115,
192
- "ball": 119,
193
- "bannister": 95,
194
- "bar": 77,
195
- "barrel": 111,
196
- "base": 40,
197
- "basket": 112,
198
- "bathtub": 37,
199
- "bed ": 7,
200
- "bench": 69,
201
- "bicycle": 127,
202
- "blanket": 131,
203
- "blind": 63,
204
- "boat": 76,
205
- "book": 67,
206
- "bookcase": 62,
207
- "booth": 88,
208
- "bottle": 98,
209
- "box": 41,
210
- "bridge": 61,
211
- "buffet": 99,
212
- "building": 1,
213
- "bulletin board": 144,
214
- "bus": 80,
215
- "cabinet": 10,
216
- "canopy": 106,
217
- "car": 20,
218
- "case": 55,
219
- "ceiling": 5,
220
- "chair": 19,
221
- "chandelier": 85,
222
- "chest of drawers": 44,
223
- "clock": 148,
224
- "coffee table": 64,
225
- "column": 42,
226
- "computer": 74,
227
- "conveyer belt": 105,
228
- "counter": 45,
229
- "countertop": 70,
230
- "cradle": 117,
231
- "crt screen": 141,
232
- "curtain": 18,
233
- "cushion": 39,
234
- "desk": 33,
235
- "dirt track": 91,
236
- "dishwasher": 129,
237
- "door": 14,
238
- "earth": 13,
239
- "escalator": 96,
240
- "fan": 139,
241
- "fence": 32,
242
- "field": 29,
243
- "fireplace": 49,
244
- "flag": 149,
245
- "floor": 3,
246
- "flower": 66,
247
- "food": 120,
248
- "fountain": 104,
249
- "glass": 147,
250
- "grandstand": 51,
251
- "grass": 9,
252
- "hill": 68,
253
- "hood": 133,
254
- "house": 25,
255
- "hovel": 79,
256
- "kitchen island": 73,
257
- "lake": 128,
258
- "lamp": 36,
259
- "land": 94,
260
- "light": 82,
261
- "microwave": 124,
262
- "minibike": 116,
263
- "mirror": 27,
264
- "monitor": 143,
265
- "mountain": 16,
266
- "ottoman": 97,
267
- "oven": 118,
268
- "painting": 22,
269
- "palm": 72,
270
- "path": 52,
271
- "person": 12,
272
- "pier": 140,
273
- "pillow": 57,
274
- "plant": 17,
275
- "plate": 142,
276
- "plaything": 108,
277
- "pole": 93,
278
- "pool table": 56,
279
- "poster": 100,
280
- "pot": 125,
281
- "radiator": 146,
282
- "railing": 38,
283
- "refrigerator": 50,
284
- "river": 60,
285
- "road": 6,
286
- "rock": 34,
287
- "rug": 28,
288
- "runway": 54,
289
- "sand": 46,
290
- "sconce": 134,
291
- "screen": 130,
292
- "screen door": 58,
293
- "sculpture": 132,
294
- "sea": 26,
295
- "seat": 31,
296
- "shelf": 24,
297
- "ship": 103,
298
- "shower": 145,
299
- "sidewalk": 11,
300
- "signboard": 43,
301
- "sink": 47,
302
- "sky": 2,
303
- "skyscraper": 48,
304
- "sofa": 23,
305
- "stage": 101,
306
- "stairs": 53,
307
- "stairway": 59,
308
- "step": 121,
309
- "stool": 110,
310
- "stove": 71,
311
- "streetlight": 87,
312
- "swimming pool": 109,
313
- "swivel chair": 75,
314
- "table": 15,
315
- "tank": 122,
316
- "television receiver": 89,
317
- "tent": 114,
318
- "toilet": 65,
319
- "towel": 81,
320
- "tower": 84,
321
- "trade name": 123,
322
- "traffic light": 136,
323
- "tray": 137,
324
- "tree": 4,
325
- "truck": 83,
326
- "van": 102,
327
- "vase": 135,
328
- "wall": 0,
329
- "wardrobe": 35,
330
- "washer": 107,
331
- "water": 21,
332
- "waterfall": 113,
333
- "windowpane": 8
334
- },
335
- "layer_norm_eps": 1e-06,
336
- "mlp_ratios": [
337
- 4,
338
- 4,
339
- 4,
340
- 4
341
- ],
342
- "model_type": "segformer",
343
- "num_attention_heads": [
344
- 1,
345
- 2,
346
- 5,
347
- 8
348
- ],
349
- "num_channels": 3,
350
- "num_encoder_blocks": 4,
351
- "patch_sizes": [
352
- 7,
353
- 3,
354
- 3,
355
- 3
356
- ],
357
- "reshape_last_stage": true,
358
- "sr_ratios": [
359
- 8,
360
- 4,
361
- 2,
362
- 1
363
- ],
364
- "strides": [
365
- 4,
366
- 2,
367
- 2,
368
- 2
369
- ],
370
- "torch_dtype": "float32",
371
- "transformers_version": "4.12.0.dev0"
372
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
labels.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ road
2
+ sidewalk
3
+ building
4
+ wall
5
+ fence
6
+ pole
7
+ traffic light
8
+ traffic sign
9
+ vegetation
10
+ terrain
11
+ sky
12
+ person
13
+ rider
14
+ car
15
+ truck
16
+ bus
17
+ train
18
+ motorcycle
19
+ bicycle
preprocessor_config.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "do_normalize": true,
3
- "do_resize": true,
4
- "feature_extractor_type": "SegformerFeatureExtractor",
5
- "image_mean": [
6
- 0.485,
7
- 0.456,
8
- 0.406
9
- ],
10
- "image_std": [
11
- 0.229,
12
- 0.224,
13
- 0.225
14
- ],
15
- "reduce_labels": true,
16
- "resample": 2,
17
- "size": 512
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f4df97633cbedd558ecffa3ad228ace5af37e082678390b45a9d22745787c61
3
- size 15092257
 
 
 
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib
tf_model.h5 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d38f99e2a8e73bbdb4635669be5bfcbbfc85b4b5c1ac75d36b47312c7fc5d06e
3
- size 15285696
 
 
 
 
/354/212/244/355/201/254/353/246/260/354/203/267(247).png ADDED