Spaces:
Running
Running
更新 Gunicorn 配置以优化连接管理;在处理条目时增加对空文本的处理,确保输入有效性
Browse files- blkeras.py +1 -1
- gunicorn.conf.py +4 -0
- preprocess.py +8 -4
blkeras.py
CHANGED
@@ -66,7 +66,7 @@ def get_model():
|
|
66 |
"ConcatenateTimesteps": ConcatenateTimesteps
|
67 |
})
|
68 |
|
69 |
-
model.summary()
|
70 |
model_initialized = True
|
71 |
return model
|
72 |
|
|
|
66 |
"ConcatenateTimesteps": ConcatenateTimesteps
|
67 |
})
|
68 |
|
69 |
+
# model.summary()
|
70 |
model_initialized = True
|
71 |
return model
|
72 |
|
gunicorn.conf.py
CHANGED
@@ -14,6 +14,10 @@ threads = 2
|
|
14 |
# 请求超时时间
|
15 |
timeout = 600
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# 工作方式
|
18 |
worker_class = "uvicorn.workers.UvicornWorker"
|
19 |
|
|
|
14 |
# 请求超时时间
|
15 |
timeout = 600
|
16 |
|
17 |
+
keepalive = 5 # keep-alive 连接等待时间,建议设置较小值
|
18 |
+
graceful_timeout = 30 # 优雅关闭超时时间,给进程2分钟清理资源
|
19 |
+
|
20 |
+
|
21 |
# 工作方式
|
22 |
worker_class = "uvicorn.workers.UvicornWorker"
|
23 |
|
preprocess.py
CHANGED
@@ -74,7 +74,7 @@ class LazyWord2Vec:
|
|
74 |
def load_model(self):
|
75 |
if self._model is None:
|
76 |
print(f"Loading Word2Vec model from path: {self.model_path}...")
|
77 |
-
self._model = KeyedVectors.load(self.model_path
|
78 |
|
79 |
@property
|
80 |
def model(self):
|
@@ -677,11 +677,15 @@ def dependency_parsing(text):
|
|
677 |
def processing_entry(entry):
|
678 |
# print(f"processing_entry: {entry}")
|
679 |
|
|
|
|
|
|
|
|
|
680 |
|
681 |
-
lemmatized_entry = preprocessing_entry(
|
682 |
# print(f"lemmatized_entry: {lemmatized_entry}")
|
683 |
|
684 |
-
cleaned_text = disposal_noise(
|
685 |
# print(f"disposal_noise: {cleaned_text}")
|
686 |
|
687 |
pos_tag = pos_tagging(cleaned_text)
|
@@ -694,7 +698,7 @@ def processing_entry(entry):
|
|
694 |
# print(f"dependency_parsing: {db_dependency_parsing}")
|
695 |
dependency_parsed = None
|
696 |
|
697 |
-
sentiment_score = get_sentiment_score(
|
698 |
# print(f"sentiment_score: {sentiment_score}")
|
699 |
|
700 |
|
|
|
74 |
def load_model(self):
|
75 |
if self._model is None:
|
76 |
print(f"Loading Word2Vec model from path: {self.model_path}...")
|
77 |
+
self._model = KeyedVectors.load(self.model_path)
|
78 |
|
79 |
@property
|
80 |
def model(self):
|
|
|
677 |
def processing_entry(entry):
|
678 |
# print(f"processing_entry: {entry}")
|
679 |
|
680 |
+
text = entry
|
681 |
+
if text and text.strip() == "EMPTY_TEXT":
|
682 |
+
text = "It just a normal day."
|
683 |
+
|
684 |
|
685 |
+
lemmatized_entry = preprocessing_entry(text)
|
686 |
# print(f"lemmatized_entry: {lemmatized_entry}")
|
687 |
|
688 |
+
cleaned_text = disposal_noise(text)
|
689 |
# print(f"disposal_noise: {cleaned_text}")
|
690 |
|
691 |
pos_tag = pos_tagging(cleaned_text)
|
|
|
698 |
# print(f"dependency_parsing: {db_dependency_parsing}")
|
699 |
dependency_parsed = None
|
700 |
|
701 |
+
sentiment_score = get_sentiment_score(entry)
|
702 |
# print(f"sentiment_score: {sentiment_score}")
|
703 |
|
704 |
|