parneetsingh022 commited on
Commit
b0471d8
·
verified ·
1 Parent(s): 204a072

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -2
app.py CHANGED
@@ -1,10 +1,50 @@
1
  import gradio as gr
2
  import torch
 
3
  from PIL import Image
4
  from torchvision import transforms
5
 
6
- from catdog_classifier.configuration import CustomModelConfig
7
- from catdog_classifier.model import CustomClassifier
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def greet(image):
10
  return "Hello " + "name" + "!!"
 
1
  import gradio as gr
2
  import torch
3
+ from torch import nn
4
  from PIL import Image
5
  from torchvision import transforms
6
 
7
+
8
+ class CustomModel(nn.Module):
9
+ def __init__(self, input_shape, num_classes):
10
+ super(CustomModel, self).__init__()
11
+
12
+ self.conv_layers = nn.Sequential(
13
+ nn.Conv2d(in_channels=input_shape[0], out_channels=32, kernel_size=3, padding=1),
14
+ nn.ReLU(),
15
+ nn.BatchNorm2d(32),
16
+ nn.MaxPool2d(kernel_size=2),
17
+ nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
18
+ nn.ReLU(),
19
+ nn.BatchNorm2d(64),
20
+ nn.MaxPool2d(kernel_size=2),
21
+ nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
22
+ nn.ReLU(),
23
+ nn.BatchNorm2d(128),
24
+ nn.MaxPool2d(kernel_size=2),
25
+ nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
26
+ nn.ReLU(),
27
+ nn.BatchNorm2d(128),
28
+ nn.MaxPool2d(kernel_size=2)
29
+ )
30
+
31
+ self.fc_layers = nn.Sequential(
32
+ nn.Flatten(),
33
+ nn.Dropout(0.5),
34
+ nn.Linear(128 * (input_shape[1] // 16) * (input_shape[2] // 16), 512),
35
+ nn.ReLU(),
36
+ nn.BatchNorm1d(512),
37
+ nn.Dropout(0.5),
38
+ nn.Linear(512, num_classes)
39
+ )
40
+
41
+ def forward(self, x):
42
+ x = self.conv_layers(x)
43
+ x = self.fc_layers(x)
44
+ return x
45
+
46
+ model = CustomModel(input_shape=(3,128,128), num_classes=2)
47
+ model.load_state_dict(torch.load('model.pth'))
48
 
49
  def greet(image):
50
  return "Hello " + "name" + "!!"