parthb3 commited on
Commit
3c0cd7e
1 Parent(s): a52e263

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +215 -0
app.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """pod_to_sum_v3.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1rbZ98r1Z_IM0Z3VDuNQObxpuZf5KUgmL
8
+
9
+ ### Initialization
10
+ """
11
+
12
+ import os
13
+ save_dir= os.path.join('./','docs')
14
+ if not os.path.exists(save_dir):
15
+ os.mkdir(save_dir)
16
+
17
+ transcription_model = "openai/whisper-base"
18
+ llm_model = "gmurro/bart-large-finetuned-filtered-spotify-podcast-summ"
19
+
20
+ !pip install -U -q pytube transformers
21
+
22
+ !pip -q install gradio==3.45.0
23
+
24
+ import pandas as pd
25
+ import numpy as np
26
+ import pytube
27
+ from pytube import YouTube
28
+ import transformers
29
+ from transformers import pipeline
30
+ import torch
31
+
32
+ device = "cuda" if torch.cuda.is_available() else "cpu"
33
+
34
+ """### Define how to get transcript of the YT video"""
35
+
36
+ def get_transcript(url):
37
+ yt_video = YouTube(str(url))
38
+ yt_audio = yt_video.streams.filter(only_audio=True, file_extension='mp4').first() # get 1st available audio stream
39
+ out_file = yt_audio.download(filename="audio.mp4", output_path = save_dir)
40
+
41
+ asr = pipeline("automatic-speech-recognition", model=transcription_model, device=device)
42
+
43
+ import librosa
44
+ speech_array, sampling_rate = librosa.load(out_file, sr=16000) # getting audio file array
45
+
46
+ audio_text = asr(
47
+ speech_array,
48
+ max_new_tokens=256,
49
+ generate_kwargs={"task": "transcribe"},
50
+ chunk_length_s=30,
51
+ batch_size=8) # calling whisper model
52
+
53
+ del(asr)
54
+ torch.cuda.empty_cache() #deleting cache
55
+
56
+ return audio_text['text']
57
+
58
+ """### Define functions to generate summary"""
59
+
60
+ def clean_sent(sent_list):
61
+ new_sent_list = [sent_list[0]]
62
+ for i in range(len(sent_list)):
63
+ if sent_list[i] != new_sent_list[-1]: new_sent_list.append(sent_list[i])
64
+ return new_sent_list
65
+
66
+ import nltk
67
+ nltk.download('punkt')
68
+
69
+ def get_chunks (audio_text, sent_overlap, max_token, tokenizer):
70
+ # pre-processing text
71
+ sentences = nltk.tokenize.sent_tokenize(audio_text)
72
+ sentences = clean_sent(sentences)
73
+
74
+ first_sentence = 0
75
+ last_sentence = 0
76
+ chunks=[]
77
+ while last_sentence <= len(sentences) - 1:
78
+ last_sentence = first_sentence
79
+ chunk_parts = []
80
+ chunk_size = 0
81
+ for sentence in sentences[first_sentence:]:
82
+ sentence_sz = len(tokenizer.tokenize(sentence))
83
+ if chunk_size + sentence_sz > max_token:
84
+ break
85
+
86
+ chunk_parts.append(sentence)
87
+ chunk_size += sentence_sz
88
+ last_sentence += 1
89
+
90
+ chunks.append(" ".join(chunk_parts))
91
+ first_sentence = last_sentence - sent_overlap
92
+ return chunks
93
+
94
+ """### Define how to get summary of the transcript"""
95
+
96
+ def get_summary(audio_text):
97
+ import re
98
+ audio_text = re.sub(r'\b(\w+) \1\b', r'\1', audio_text, flags=re.IGNORECASE) # cleaning text
99
+
100
+ from transformers import AutoTokenizer
101
+ tokenizer = AutoTokenizer.from_pretrained(llm_model) # set tockenizer
102
+
103
+ from transformers import pipeline
104
+ summarizer = pipeline("summarization", model=llm_model) # set summarizer
105
+
106
+ model_max_tokens = tokenizer.model_max_length # get max tockens model can process
107
+ text_tokens = len(tokenizer.tokenize(audio_text)) # get number of tockens in audio text
108
+
109
+ def get_map_summary(chunk_text, summarizer):
110
+ max_token = model_max_tokens - 2 #protect for "" before and after the text
111
+ sent_overlap = 3 #overlapping sentences between 2 chunks
112
+ sent_chunks = get_chunks(audio_text = chunk_text,sent_overlap = sent_overlap,max_token = max_token, tokenizer = tokenizer) # get chunks
113
+ chunk_summary_list = summarizer(sent_chunks,min_length=50, max_length=200, batch_size=8) # get summary per chunk
114
+
115
+ grouped_summary = ""
116
+ for c in chunk_summary_list: grouped_summary += c['summary_text'] + " "
117
+
118
+
119
+ return grouped_summary
120
+
121
+ # check text requires map-reduce stategy
122
+
123
+ map_text = audio_text
124
+ long_summary = ""
125
+
126
+ while text_tokens > model_max_tokens:
127
+ map_summary = get_map_summary(chunk_text=map_text, summarizer=summarizer)
128
+ text_tokens = len(tokenizer.tokenize(map_summary))
129
+ long_summary = map_summary
130
+ map_text = map_summary
131
+
132
+ # else deploy reduce method
133
+ else:
134
+ max_token = round(text_tokens*0.3) # 1/3rd reduction
135
+ final_summary = summarizer(map_text,min_length=35, max_length=max_token)
136
+ final_summary = final_summary[0]["summary_text"]
137
+
138
+ if long_summary == "": long_summary = "The video is too short to produce a descriptive summary"
139
+
140
+ del(tokenizer, summarizer)
141
+ torch.cuda.empty_cache() #deleting cache
142
+
143
+ return final_summary, long_summary
144
+
145
+
146
+ """### Defining Gradio App"""
147
+
148
+ import gradio as gr
149
+
150
+ import pytube
151
+ from pytube import YouTube
152
+
153
+ def get_youtube_title(url):
154
+ yt = YouTube(str(url))
155
+ return yt.title
156
+
157
+ def get_video(url):
158
+ vid_id = pytube.extract.video_id(url)
159
+ embed_html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/{}" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'.format(vid_id)
160
+ return embed_html
161
+
162
+ def summarize_youtube_video(url):
163
+ print("URL:",url)
164
+ text = get_transcript(url)
165
+ print("Transcript:",text[:500])
166
+ short_summary, long_summary = get_summary(text)
167
+ print("Short Summary:",short_summary)
168
+ print("Long Summary:",long_summary)
169
+ return text, short_summary, long_summary
170
+
171
+ html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'
172
+
173
+ # Defining the structure of the UI
174
+ with gr.Blocks() as demo:
175
+ with gr.Row():
176
+ gr.Markdown("# Summarize a Long YouTube Video")
177
+
178
+ with gr.Row():
179
+ with gr.Column(scale=4):
180
+ url = gr.Textbox(label="Enter YouTube video link here:",placeholder="https://www.youtube.com/watch?v=")
181
+ with gr.Column(scale=1):
182
+ sum_btn = gr.Button("Summarize!")
183
+
184
+ gr.Markdown("# Results")
185
+
186
+ title = gr.Textbox(label="Video Title",placeholder="title...")
187
+
188
+ with gr.Row():
189
+ with gr.Column(scale=4):
190
+ video = gr.HTML(html,scale=1)
191
+ with gr.Column():
192
+ with gr.Row():
193
+ short_summary = gr.Textbox(label="Gist",placeholder="short summary...",scale=1)
194
+ with gr.Row():
195
+ long_summary = gr.Textbox(label="Summary",placeholder="long summary...",scale=2)
196
+
197
+
198
+ with gr.Row():
199
+ with gr.Group():
200
+ text = gr.Textbox(label="Full Transcript",placeholder="transcript...",show_label=True)
201
+
202
+ with gr.Accordion("Credits and Notes",open=False):
203
+ gr.Markdown("""
204
+ 1. Transcipt is generated by openai/whisper-base model by downloading YouTube video.\n
205
+ 2. Summary is generated by gmurro/bart-large-finetuned-filtered-spotify-podcast-summ.\n
206
+ 3. The model is possible because of Hugging Face transformers.\n
207
+ """)
208
+
209
+ # Defining the functions to call on clicking the button
210
+ sum_btn.click(fn=get_youtube_title, inputs=url, outputs=title, api_name="get_youtube_title", queue=False)
211
+ sum_btn.click(fn=summarize_youtube_video, inputs=url, outputs=[text, short_summary, long_summary], api_name="summarize_youtube_video", queue=True)
212
+ sum_btn.click(fn=get_video, inputs=url, outputs=video, api_name="get_youtube_video", queue=False)
213
+
214
+ demo.queue()
215
+ demo.launch()