Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,65 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain.prompts import PromptTemplate
|
3 |
-
from langchain_groq import ChatGroq
|
4 |
-
from langchain.vectorstores import FAISS
|
5 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
import os
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
load_dotenv()
|
9 |
-
|
10 |
-
def initialize_groq_llm():
|
11 |
-
return ChatGroq(
|
12 |
-
groq_api_key=os.getenv("GROQ_API_KEY"),
|
13 |
-
model_name="llama-3.3-70b-versatile",
|
14 |
-
max_tokens=512
|
15 |
-
)
|
16 |
-
|
17 |
-
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
18 |
-
faiss_index = FAISS.load_local(
|
19 |
-
"medical_faiss_index",
|
20 |
-
embedding_model,
|
21 |
-
allow_dangerous_deserialization=True
|
22 |
-
)
|
23 |
-
|
24 |
-
prompt_template = """
|
25 |
-
You are a healthcare professional built by Parthib, and you can assist users with health-related issues.
|
26 |
-
Use the following pieces of information along with the LLM's knowledge to answer the user's question about diseases or healthcare.
|
27 |
-
If the following pieces provide some information, combine it with your existing knowledge to craft the most accurate and helpful response.
|
28 |
-
Include relevant details such as home remedies, medications, and other necessary actions in a clear, point-wise manner for quick readability.
|
29 |
-
If any other related questions arise, just say, "I am a healthcare professional."
|
30 |
-
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
31 |
-
|
32 |
-
Context: {context}
|
33 |
-
Question: {question}
|
34 |
-
|
35 |
-
Only return the helpful answer below and nothing else.
|
36 |
-
Helpful answer:
|
37 |
-
"""
|
38 |
-
|
39 |
-
def generate_response(question):
|
40 |
-
|
41 |
-
retriever = faiss_index.as_retriever(search_kwargs={'k': 1})
|
42 |
-
docs = retriever.get_relevant_documents(question)
|
43 |
-
context = "\n".join([doc.page_content for doc in docs])
|
44 |
-
|
45 |
-
llm = initialize_groq_llm()
|
46 |
-
prompt = PromptTemplate(
|
47 |
-
input_variables=["context", "question"],
|
48 |
-
template=prompt_template
|
49 |
-
)
|
50 |
-
formatted_prompt = prompt.format(context=context, question=question)
|
51 |
-
|
52 |
-
response = llm.invoke(formatted_prompt)
|
53 |
-
return response.content
|
54 |
-
|
55 |
-
st.set_page_config(page_title="HealthCare ChatBot", page_icon="π€", layout="centered")
|
56 |
-
st.header("HealthCare ChatBot π€")
|
57 |
-
|
58 |
-
user_input = st.text_input("Ask a Healthcare related question:", "")
|
59 |
-
st.button("Generate Response")
|
60 |
-
st.spinner('Processing')
|
61 |
-
|
62 |
-
if user_input:
|
63 |
-
user_input = user_input.lower().strip()
|
64 |
-
response = generate_response(user_input)
|
65 |
-
st.write(f"Response: {response}")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
def initialize_groq_llm():
|
11 |
+
return ChatGroq(
|
12 |
+
groq_api_key=os.getenv("GROQ_API_KEY"),
|
13 |
+
model_name="llama-3.3-70b-versatile",
|
14 |
+
max_tokens=512
|
15 |
+
)
|
16 |
+
|
17 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
18 |
+
faiss_index = FAISS.load_local(
|
19 |
+
"medical_faiss_index",
|
20 |
+
embedding_model,
|
21 |
+
allow_dangerous_deserialization=True
|
22 |
+
)
|
23 |
+
|
24 |
+
prompt_template = """
|
25 |
+
You are a healthcare professional built by Parthib Karak an AI engineering from Institute of Engineering and management,kolkata, and you can assist users with health-related issues.
|
26 |
+
Use the following pieces of information along with the LLM's knowledge to answer the user's question about diseases or healthcare.
|
27 |
+
If the following pieces provide some information, combine it with your existing knowledge to craft the most accurate and helpful response.
|
28 |
+
Include relevant details such as home remedies, medications, and other necessary actions in a clear, point-wise manner for quick readability.
|
29 |
+
If any other related questions arise, just say, "I am a healthcare professional.How may i assist you today?"
|
30 |
+
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
31 |
+
|
32 |
+
Context: {context}
|
33 |
+
Question: {question}
|
34 |
+
|
35 |
+
Only return the helpful answer below and nothing else.
|
36 |
+
Helpful answer:
|
37 |
+
"""
|
38 |
+
|
39 |
+
def generate_response(question):
|
40 |
+
|
41 |
+
retriever = faiss_index.as_retriever(search_kwargs={'k': 1})
|
42 |
+
docs = retriever.get_relevant_documents(question)
|
43 |
+
context = "\n".join([doc.page_content for doc in docs])
|
44 |
+
|
45 |
+
llm = initialize_groq_llm()
|
46 |
+
prompt = PromptTemplate(
|
47 |
+
input_variables=["context", "question"],
|
48 |
+
template=prompt_template
|
49 |
+
)
|
50 |
+
formatted_prompt = prompt.format(context=context, question=question)
|
51 |
+
|
52 |
+
response = llm.invoke(formatted_prompt)
|
53 |
+
return response.content
|
54 |
+
|
55 |
+
st.set_page_config(page_title="HealthCare ChatBot", page_icon="π€", layout="centered")
|
56 |
+
st.header("HealthCare ChatBot π€")
|
57 |
+
|
58 |
+
user_input = st.text_input("Ask a Healthcare related question:", "")
|
59 |
+
st.button("Generate Response")
|
60 |
+
st.spinner('Processing')
|
61 |
+
|
62 |
+
if user_input:
|
63 |
+
user_input = user_input.lower().strip()
|
64 |
+
response = generate_response(user_input)
|
65 |
+
st.write(f"Response: {response}")
|