Spaces:
Runtime error
Runtime error
File size: 22,081 Bytes
92189dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Combined Medical-VLM, **SAM-2 automatic masking**, and CheXagent demo.
β Changes β
-----------
1. Fixed SAM-2 installation and import issues
2. Added proper error handling for missing dependencies
3. Made SAM-2 functionality optional with graceful fallback
4. Added installation instructions and requirements check
"""
# ---------------------------------------------------------------------
# Standard libs
# ---------------------------------------------------------------------
import os
import sys
import uuid
import tempfile
import subprocess
import warnings
from threading import Thread
# Environment setup
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
warnings.filterwarnings("ignore", message=r".*upsample_bicubic2d.*")
# ---------------------------------------------------------------------
# Third-party libs
# ---------------------------------------------------------------------
import torch
import numpy as np
from PIL import Image, ImageDraw
import gradio as gr
# =============================================================================
# Dependency checker and installer
# =============================================================================
def check_and_install_sam2():
"""Check if SAM-2 is available and attempt installation if needed."""
try:
print("[SAM-2 Debug] Attempting to import SAM-2 modules...")
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
print("[SAM-2 Debug] Successfully imported SAM-2 modules")
return True, "SAM-2 already available"
except ImportError as e:
print(f"[SAM-2 Debug] Import error: {str(e)}")
print("[SAM-2 Debug] Attempting to install SAM-2...")
try:
# Clone SAM-2 repository
if not os.path.exists("segment-anything-2"):
print("[SAM-2 Debug] Cloning SAM-2 repository...")
subprocess.run([
"git", "clone",
"https://github.com/facebookresearch/segment-anything-2.git"
], check=True)
print("[SAM-2 Debug] Repository cloned successfully")
# Install SAM-2
print("[SAM-2 Debug] Installing SAM-2...")
original_dir = os.getcwd()
os.chdir("segment-anything-2")
subprocess.run([sys.executable, "-m", "pip", "install", "-e", "."], check=True)
os.chdir(original_dir)
print("[SAM-2 Debug] Installation completed")
# Add to Python path
sam2_path = os.path.abspath("segment-anything-2")
if sam2_path not in sys.path:
sys.path.insert(0, sam2_path)
print(f"[SAM-2 Debug] Added {sam2_path} to Python path")
# Try importing again
print("[SAM-2 Debug] Attempting to import SAM-2 modules again...")
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
print("[SAM-2 Debug] Successfully imported SAM-2 modules after installation")
return True, "SAM-2 installed successfully"
except Exception as e:
print(f"[SAM-2 Debug] Installation failed: {str(e)}")
print(f"[SAM-2 Debug] Error type: {type(e).__name__}")
return False, f"SAM-2 installation failed: {e}"
# Check SAM-2 availability
SAM2_AVAILABLE, SAM2_STATUS = check_and_install_sam2()
print(f"SAM-2 Status: {SAM2_STATUS}")
# =============================================================================
# SAM-2 imports (conditional)
# =============================================================================
if SAM2_AVAILABLE:
try:
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.modeling.sam2_base import SAM2Base
except ImportError as e:
print(f"SAM-2 import error: {e}")
SAM2_AVAILABLE = False
# =============================================================================
# Qwen-VLM imports & helper
# =============================================================================
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
# =============================================================================
# CheXagent imports
# =============================================================================
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
# ---------------------------------------------------------------------
# Devices
# ---------------------------------------------------------------------
def get_device():
if torch.cuda.is_available():
return torch.device("cuda")
if torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
# =============================================================================
# Qwen-VLM model & agent
# =============================================================================
_qwen_model = None
_qwen_processor = None
_qwen_device = None
def load_qwen_model_and_processor(hf_token=None):
global _qwen_model, _qwen_processor, _qwen_device
if _qwen_model is None:
_qwen_device = "mps" if torch.backends.mps.is_available() else "cpu"
print(f"[Qwen] loading model on {_qwen_device}")
auth_kwargs = {"use_auth_token": hf_token} if hf_token else {}
_qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct",
trust_remote_code=True,
attn_implementation="eager",
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
device_map=None,
**auth_kwargs,
).to(_qwen_device)
_qwen_processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct",
trust_remote_code=True,
**auth_kwargs,
)
return _qwen_model, _qwen_processor, _qwen_device
class MedicalVLMAgent:
"""Light wrapper around Qwen-VLM with an optional image."""
def __init__(self, model, processor, device):
self.model = model
self.processor = processor
self.device = device
self.system_prompt = (
"You are a medical information assistant with vision capabilities.\n"
"Disclaimer: I am not a licensed medical professional. "
"The information provided is for reference only and should not be taken as medical advice."
)
def run(self, user_text: str, image: Image.Image | None = None) -> str:
messages = [
{"role": "system", "content": [{"type": "text", "text": self.system_prompt}]}
]
user_content = []
if image is not None:
tmp = f"/tmp/{uuid.uuid4()}.png"
image.save(tmp)
user_content.append({"type": "image", "image": tmp})
user_content.append({"type": "text", "text": user_text or "Please describe the image."})
messages.append({"role": "user", "content": user_content})
prompt_text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
img_inputs, vid_inputs = process_vision_info(messages)
inputs = self.processor(
text=[prompt_text],
images=img_inputs,
videos=vid_inputs,
padding=True,
return_tensors="pt",
).to(self.device)
with torch.no_grad():
out = self.model.generate(**inputs, max_new_tokens=128)
trimmed = out[0][inputs.input_ids.shape[1] :]
return self.processor.decode(trimmed, skip_special_tokens=True).strip()
# =============================================================================
# SAM-2 model + AutomaticMaskGenerator (final minimal version)
# =============================================================================
import os
import numpy as np
from PIL import Image, ImageDraw
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
def initialize_sam2():
# These two files are already in your repo
CKPT = "checkpoints/sam2.1_hiera_large.pt" # β2.7 GB
CFG = "configs/sam2.1/sam2.1_hiera_l.yaml"
# One chdir so Hydra's search path starts inside sam2/sam2/
os.chdir("sam2/sam2")
device = get_device()
print(f"[SAM-2] building model on {device}")
sam2_model = build_sam2(
CFG, # relative to sam2/sam2/
CKPT, # relative after chdir
device=device,
apply_postprocessing=False,
)
mask_gen = SAM2AutomaticMaskGenerator(
model=sam2_model,
points_per_side=32,
pred_iou_thresh=0.86,
stability_score_thresh=0.92,
crop_n_layers=0,
)
return sam2_model, mask_gen
# ---------------------- build once ----------------------
try:
_sam2_model, _mask_generator = initialize_sam2()
print("[SAM-2] Successfully initialized!")
except Exception as e:
print(f"[SAM-2] Failed to initialize: {e}")
_sam2_model, _mask_generator = None, None
def automatic_mask_overlay(image_np: np.ndarray) -> np.ndarray:
"""Generate masks and alpha-blend them on top of the original image."""
if _mask_generator is None:
raise RuntimeError("SAM-2 mask generator not initialized")
anns = _mask_generator.generate(image_np)
if not anns:
return image_np
overlay = image_np.copy()
if overlay.ndim == 2: # grayscale β RGB
overlay = np.stack([overlay] * 3, axis=2)
for ann in sorted(anns, key=lambda x: x["area"], reverse=True):
m = ann["segmentation"]
color = np.random.randint(0, 255, 3, dtype=np.uint8)
overlay[m] = (overlay[m] * 0.5 + color * 0.5).astype(np.uint8)
return overlay
def tumor_segmentation_interface(image: Image.Image | None):
if image is None:
return None, "Please upload an image."
if _mask_generator is None:
return None, "SAM-2 not properly initialized. Check the console for errors."
try:
img_np = np.array(image.convert("RGB"))
out_np = automatic_mask_overlay(img_np)
n_masks = len(_mask_generator.generate(img_np))
return Image.fromarray(out_np), f"{n_masks} masks found."
except Exception as e:
return None, f"SAM-2 error: {e}"
# =============================================================================
# Simple fallback segmentation (when SAM-2 is not available)
# =============================================================================
def simple_segmentation_fallback(image: Image.Image | None):
"""Simple fallback segmentation using basic image processing."""
if image is None:
return None, "Please upload an image."
try:
import cv2
from skimage import segmentation, color
# Convert to numpy array
img_np = np.array(image.convert("RGB"))
# Simple watershed segmentation
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Remove noise
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=2)
# Sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0)
# Create overlay
overlay = img_np.copy()
overlay[sure_fg > 0] = [255, 0, 0] # Red overlay
# Alpha blend
result = cv2.addWeighted(img_np, 0.7, overlay, 0.3, 0)
return Image.fromarray(result), "Simple segmentation applied (SAM-2 not available)"
except Exception as e:
return None, f"Fallback segmentation error: {e}"
# =============================================================================
# CheXagent set-up
# =============================================================================
try:
print("[CheXagent] Starting initialization...")
chex_name = "StanfordAIMI/CheXagent-2-3b"
print(f"[CheXagent] Loading tokenizer from {chex_name}")
chex_tok = AutoTokenizer.from_pretrained(chex_name, trust_remote_code=True)
print("[CheXagent] Tokenizer loaded successfully")
print("[CheXagent] Loading model...")
chex_model = AutoModelForCausalLM.from_pretrained(
chex_name,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
print("[CheXagent] Model loaded successfully")
if torch.cuda.is_available():
print("[CheXagent] Converting to half precision for GPU")
chex_model = chex_model.half()
else:
print("[CheXagent] Using full precision for CPU")
chex_model = chex_model.float()
chex_model.eval()
CHEXAGENT_AVAILABLE = True
print("[CheXagent] Initialization complete")
except Exception as e:
print(f"[CheXagent] Initialization failed: {str(e)}")
print(f"[CheXagent] Error type: {type(e).__name__}")
CHEXAGENT_AVAILABLE = False
chex_tok, chex_model = None, None
def get_model_device(model):
if model is None:
return torch.device("cpu")
for p in model.parameters():
return p.device
return torch.device("cpu")
def clean_text(text):
return text.replace("</s>", "")
@torch.no_grad()
def response_report_generation(pil_image_1, pil_image_2):
"""Structured chest-X-ray report (streaming)."""
if not CHEXAGENT_AVAILABLE:
yield "CheXagent is not available. Please check installation."
return
streamer = TextIteratorStreamer(chex_tok, skip_prompt=True, skip_special_tokens=True)
paths = []
for im in [pil_image_1, pil_image_2]:
if im is None:
continue
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
im.save(tfile.name)
paths.append(tfile.name)
if not paths:
yield "Please upload at least one image."
return
device = get_model_device(chex_model)
anatomies = [
"View",
"Airway",
"Breathing",
"Cardiac",
"Diaphragm",
"Everything else (e.g., mediastinal contours, bones, soft tissues, tubes, valves, pacemakers)",
]
prompts = [
"Determine the view of this CXR",
*[
f'Provide a detailed description of "{a}" in the chest X-ray'
for a in anatomies[1:]
],
]
findings = ""
partial = "## Generating Findings (step-by-step):\n\n"
for idx, (anat, prompt) in enumerate(zip(anatomies, prompts)):
query = chex_tok.from_list_format(
[*[{"image": p} for p in paths], {"text": prompt}]
)
conv = [
{"from": "system", "value": "You are a helpful assistant."},
{"from": "human", "value": query},
]
inp = chex_tok.apply_chat_template(
conv, add_generation_prompt=True, return_tensors="pt"
).to(device)
generate_kwargs = dict(
input_ids=inp,
max_new_tokens=512,
do_sample=False,
num_beams=1,
streamer=streamer,
)
Thread(target=chex_model.generate, kwargs=generate_kwargs).start()
partial += f"**Step {idx}: {anat}...**\n\n"
for tok in streamer:
if idx:
findings += tok
partial += tok
yield clean_text(partial)
partial += "\n\n"
findings += " "
findings = findings.strip()
# Impression
partial += "## Generating Impression\n\n"
prompt = f"Write the Impression section for the following Findings: {findings}"
conv = [
{"from": "system", "value": "You are a helpful assistant."},
{"from": "human", "value": chex_tok.from_list_format([{"text": prompt}])},
]
inp = chex_tok.apply_chat_template(
conv, add_generation_prompt=True, return_tensors="pt"
).to(device)
Thread(
target=chex_model.generate,
kwargs=dict(
input_ids=inp,
do_sample=False,
num_beams=1,
max_new_tokens=512,
streamer=streamer,
),
).start()
for tok in streamer:
partial += tok
yield clean_text(partial)
yield clean_text(partial)
@torch.no_grad()
def response_phrase_grounding(pil_image, prompt_text):
"""Very simple visual-grounding placeholder."""
if not CHEXAGENT_AVAILABLE:
return "CheXagent is not available. Please check installation.", None
if pil_image is None:
return "Please upload an image.", None
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tfile:
pil_image.save(tfile.name)
img_path = tfile.name
device = get_model_device(chex_model)
query = chex_tok.from_list_format([{"image": img_path}, {"text": prompt_text}])
conv = [
{"from": "system", "value": "You are a helpful assistant."},
{"from": "human", "value": query},
]
inp = chex_tok.apply_chat_template(
conv, add_generation_prompt=True, return_tensors="pt"
).to(device)
out = chex_model.generate(
input_ids=inp, do_sample=False, num_beams=1, max_new_tokens=512
)
resp = clean_text(chex_tok.decode(out[0][inp.shape[1] :]))
# simple center box (placeholder)
w, h = pil_image.size
cx, cy, sz = w // 2, h // 2, min(w, h) // 4
draw = ImageDraw.Draw(pil_image)
draw.rectangle([(cx - sz, cy - sz), (cx + sz, cy + sz)], outline="red", width=3)
return resp, pil_image
# =============================================================================
# Gradio UI
# =============================================================================
def create_ui():
"""Create the Gradio interface."""
# Load Qwen model
try:
qwen_model, qwen_proc, qwen_dev = load_qwen_model_and_processor()
med_agent = MedicalVLMAgent(qwen_model, qwen_proc, qwen_dev)
qwen_available = True
except Exception as e:
print(f"Qwen model not available: {e}")
qwen_available = False
med_agent = None
with gr.Blocks(title="Medical AI Assistant") as demo:
gr.Markdown("# Combined Medical Q&A Β· SAM-2 Automatic Masking Β· CheXagent")
# Status information
with gr.Row():
gr.Markdown(f"""
**System Status:**
- Qwen VLM: {'β
Available' if qwen_available else 'β Not Available'}
- SAM-2: {'β
Available' if SAM2_AVAILABLE else 'β Not Available'}
- CheXagent: {'β
Available' if CHEXAGENT_AVAILABLE else 'β Not Available'}
""")
# Medical Q&A Tab
with gr.Tab("Medical Q&A"):
if qwen_available:
q_in = gr.Textbox(label="Question / description", lines=3)
q_img = gr.Image(label="Optional image", type="pil")
q_btn = gr.Button("Submit")
q_out = gr.Textbox(label="Answer")
q_btn.click(fn=med_agent.run, inputs=[q_in, q_img], outputs=q_out)
else:
gr.Markdown("β Medical Q&A is not available. Qwen model failed to load.")
# Segmentation Tab
with gr.Tab("Automatic masking"):
seg_img = gr.Image(label="Upload medical image", type="pil")
seg_btn = gr.Button("Run segmentation")
seg_out = gr.Image(label="Segmentation result", type="pil")
seg_status = gr.Textbox(label="Status", interactive=False)
if SAM2_AVAILABLE and _mask_generator is not None:
seg_btn.click(
fn=tumor_segmentation_interface,
inputs=seg_img,
outputs=[seg_out, seg_status],
)
else:
seg_btn.click(
fn=simple_segmentation_fallback,
inputs=seg_img,
outputs=[seg_out, seg_status],
)
# CheXagent Tabs
with gr.Tab("CheXagent β Structured report"):
if CHEXAGENT_AVAILABLE:
gr.Markdown("Upload one or two chest X-ray images; the report streams live.")
cx1 = gr.Image(label="Image 1", image_mode="L", type="pil")
cx2 = gr.Image(label="Image 2", image_mode="L", type="pil")
cx_report = gr.Markdown()
gr.Interface(
fn=response_report_generation,
inputs=[cx1, cx2],
outputs=cx_report,
live=True,
).render()
else:
gr.Markdown("β CheXagent structured report is not available.")
with gr.Tab("CheXagent β Visual grounding"):
if CHEXAGENT_AVAILABLE:
vg_img = gr.Image(image_mode="L", type="pil")
vg_prompt = gr.Textbox(value="Locate the highlighted finding:")
vg_text = gr.Markdown()
vg_out_img = gr.Image()
gr.Interface(
fn=response_phrase_grounding,
inputs=[vg_img, vg_prompt],
outputs=[vg_text, vg_out_img],
).render()
else:
gr.Markdown("β CheXagent visual grounding is not available.")
return demo
if __name__ == "__main__":
demo = create_ui()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |