File size: 21,890 Bytes
06daf35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import copy
from concurrent.futures import ThreadPoolExecutor, Future
from dataclasses import dataclass, fields
from contextlib import ExitStack
import gzip
import json
import logging
import os
from pathlib import Path
import random
import sys
import typing as tp

import torch
import torch.nn.functional as F

from .audio import audio_read, audio_info
from .audio_utils import convert_audio
from .zip import PathInZip

try:
    import dora
except ImportError:
    dora = None  # type: ignore


@dataclass(order=True)
class BaseInfo:

    @classmethod
    def _dict2fields(cls, dictionary: dict):
        return {
            field.name: dictionary[field.name]
            for field in fields(cls) if field.name in dictionary
        }

    @classmethod
    def from_dict(cls, dictionary: dict):
        _dictionary = cls._dict2fields(dictionary)
        return cls(**_dictionary)

    def to_dict(self):
        return {
            field.name: self.__getattribute__(field.name)
            for field in fields(self)
            }


@dataclass(order=True)
class AudioMeta(BaseInfo):
    path: str
    duration: float
    sample_rate: int
    amplitude: tp.Optional[float] = None
    weight: tp.Optional[float] = None
    # info_path is used to load additional information about the audio file that is stored in zip files.
    info_path: tp.Optional[PathInZip] = None

    @classmethod
    def from_dict(cls, dictionary: dict):
        base = cls._dict2fields(dictionary)
        if 'info_path' in base and base['info_path'] is not None:
            base['info_path'] = PathInZip(base['info_path'])
        return cls(**base)

    def to_dict(self):
        d = super().to_dict()
        if d['info_path'] is not None:
            d['info_path'] = str(d['info_path'])
        return d


@dataclass(order=True)
class SegmentInfo(BaseInfo):
    meta: AudioMeta
    seek_time: float
    n_frames: int  # actual number of frames without padding
    total_frames: int  # total number of frames, padding included
    sample_rate: int  # actual sample rate


DEFAULT_EXTS = ['.wav', '.mp3', '.flac', '.ogg', '.m4a']

logger = logging.getLogger(__name__)


def _get_audio_meta(file_path: str, minimal: bool = True) -> AudioMeta:
    """AudioMeta from a path to an audio file.

    Args:
        file_path (str): Resolved path of valid audio file.
        minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
    Returns:
        AudioMeta: Audio file path and its metadata.
    """
    info = audio_info(file_path)
    amplitude: tp.Optional[float] = None
    if not minimal:
        wav, sr = audio_read(file_path)
        amplitude = wav.abs().max().item()
    return AudioMeta(file_path, info.duration, info.sample_rate, amplitude)


def _resolve_audio_meta(m: AudioMeta, fast: bool = True) -> AudioMeta:
    """If Dora is available as a dependency, try to resolve potential relative paths
    in list of AudioMeta. This method is expected to be used when loading meta from file.

    Args:
        m (AudioMeta): Audio meta to resolve.
        fast (bool): If True, uses a really fast check for determining if a file is already absolute or not.
            Only valid on Linux/Mac.
    Returns:
        AudioMeta: Audio meta with resolved path.
    """
    def is_abs(m):
        if fast:
            return str(m)[0] == '/'
        else:
            os.path.isabs(str(m))

    if not dora:
        return m

    if not is_abs(m.path):
        m.path = dora.git_save.to_absolute_path(m.path)
    if m.info_path is not None and not is_abs(m.info_path.zip_path):
        m.info_path.zip_path = dora.git_save.to_absolute_path(m.path)
    return m


def find_audio_files(path: tp.Union[Path, str],
                     exts: tp.List[str] = DEFAULT_EXTS,
                     resolve: bool = True,
                     minimal: bool = True,
                     progress: bool = False,
                     workers: int = 0) -> tp.List[AudioMeta]:
    """Build a list of AudioMeta from a given path,
    collecting relevant audio files and fetching meta info.

    Args:
        path (str or Path): Path to folder containing audio files.
        exts (list of str): List of file extensions to consider for audio files.
        minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
        progress (bool): Whether to log progress on audio files collection.
        workers (int): number of parallel workers, if 0, use only the current thread.
    Returns:
        List[AudioMeta]: List of audio file path and its metadata.
    """
    audio_files = []
    futures: tp.List[Future] = []
    pool: tp.Optional[ThreadPoolExecutor] = None
    with ExitStack() as stack:
        if workers > 0:
            pool = ThreadPoolExecutor(workers)
            stack.enter_context(pool)

        if progress:
            print("Finding audio files...")
        for root, folders, files in os.walk(path, followlinks=True):
            for file in files:
                full_path = Path(root) / file
                if full_path.suffix.lower() in exts:
                    audio_files.append(full_path)
                    if pool is not None:
                        futures.append(pool.submit(_get_audio_meta, str(audio_files[-1]), minimal))
                    if progress:
                        print(format(len(audio_files), " 8d"), end='\r', file=sys.stderr)

        if progress:
            print("Getting audio metadata...")
        meta: tp.List[AudioMeta] = []
        for idx, file_path in enumerate(audio_files):
            try:
                if pool is None:
                    m = _get_audio_meta(str(file_path), minimal)
                else:
                    m = futures[idx].result()
                if resolve:
                    m = _resolve_audio_meta(m)
            except Exception as err:
                print("Error with", str(file_path), err, file=sys.stderr)
                continue
            meta.append(m)
            if progress:
                print(format((1 + idx) / len(audio_files), " 3.1%"), end='\r', file=sys.stderr)
    meta.sort()
    return meta


def load_audio_meta(path: tp.Union[str, Path],
                    resolve: bool = True, fast: bool = True) -> tp.List[AudioMeta]:
    """Load list of AudioMeta from an optionally compressed json file.

    Args:
        path (str or Path): Path to JSON file.
        resolve (bool): Whether to resolve the path from AudioMeta (default=True).
        fast (bool): activates some tricks to make things faster.
    Returns:
        List[AudioMeta]: List of audio file path and its total duration.
    """
    open_fn = gzip.open if str(path).lower().endswith('.gz') else open
    with open_fn(path, 'rb') as fp:  # type: ignore
        lines = fp.readlines()
    meta = []
    for line in lines:
        d = json.loads(line)
        m = AudioMeta.from_dict(d)
        if resolve:
            m = _resolve_audio_meta(m, fast=fast)
        meta.append(m)
    return meta


def save_audio_meta(path: tp.Union[str, Path], meta: tp.List[AudioMeta]):
    """Save the audio metadata to the file pointer as json.

    Args:
        path (str or Path): Path to JSON file.
        metadata (list of BaseAudioMeta): List of audio meta to save.
    """
    Path(path).parent.mkdir(exist_ok=True, parents=True)
    open_fn = gzip.open if str(path).lower().endswith('.gz') else open
    with open_fn(path, 'wb') as fp:  # type: ignore
        for m in meta:
            json_str = json.dumps(m.to_dict()) + '\n'
            json_bytes = json_str.encode('utf-8')
            fp.write(json_bytes)


class AudioDataset:
    """Base audio dataset.

    The dataset takes a list of AudioMeta and create a dataset composed of segments of audio
    and potentially additional information, by creating random segments from the list of audio
    files referenced in the metadata and applying minimal data pre-processing such as resampling,
    mixing of channels, padding, etc.

    If no segment_duration value is provided, the AudioDataset will return the full wav for each
    audio file. Otherwise, it will randomly sample audio files and create a segment of the specified
    duration, applying padding if required.

    By default, only the torch Tensor corresponding to the waveform is returned. Setting return_info=True
    allows to return a tuple containing the torch Tensor and additional metadata on the segment and the
    original audio meta.

    Args:
        meta (tp.List[AudioMeta]): List of audio files metadata.
        segment_duration (float): Optional segment duration of audio to load.
            If not specified, the dataset will load the full audio segment from the file.
        shuffle (bool): Set to `True` to have the data reshuffled at every epoch.
        sample_rate (int): Target sample rate of the loaded audio samples.
        channels (int): Target number of channels of the loaded audio samples.
        sample_on_duration (bool): Set to `True` to sample segments with probability
            dependent on audio file duration. This is only used if `segment_duration` is provided.
        sample_on_weight (bool): Set to `True` to sample segments using the `weight` entry of
            `AudioMeta`. If `sample_on_duration` is also True, the actual weight will be the product
            of the file duration and file weight. This is only used if `segment_duration` is provided.
        min_segment_ratio (float): Minimum segment ratio to use when the audio file
            is shorter than the desired segment.
        max_read_retry (int): Maximum number of retries to sample an audio segment from the dataset.
        return_info (bool): Whether to return the wav only or return wav along with segment info and metadata.
        min_audio_duration (tp.Optional[float], optional): Minimum audio file duration, in seconds, if provided
            audio shorter than this will be filtered out.
        max_audio_duration (tp.Optional[float], optional): Maximal audio file duration in seconds, if provided
            audio longer than this will be filtered out.
    """
    def __init__(self,
                 meta: tp.List[AudioMeta],
                 segment_duration: tp.Optional[float] = None,
                 shuffle: bool = True,
                 num_samples: int = 10_000,
                 sample_rate: int = 48_000,
                 channels: int = 2,
                 pad: bool = True,
                 sample_on_duration: bool = True,
                 sample_on_weight: bool = True,
                 min_segment_ratio: float = 0.5,
                 max_read_retry: int = 10,
                 return_info: bool = False,
                 min_audio_duration: tp.Optional[float] = None,
                 max_audio_duration: tp.Optional[float] = None
                 ):
        assert len(meta) > 0, 'No audio meta provided to AudioDataset. Please check loading of audio meta.'
        assert segment_duration is None or segment_duration > 0
        assert segment_duration is None or min_segment_ratio >= 0
        logging.debug(f'sample_on_duration: {sample_on_duration}')
        logging.debug(f'sample_on_weight: {sample_on_weight}')
        logging.debug(f'pad: {pad}')
        logging.debug(f'min_segment_ratio: {min_segment_ratio}')

        self.segment_duration = segment_duration
        self.min_segment_ratio = min_segment_ratio
        self.max_audio_duration = max_audio_duration
        self.min_audio_duration = min_audio_duration
        if self.min_audio_duration is not None and self.max_audio_duration is not None:
            assert self.min_audio_duration <= self.max_audio_duration
        self.meta: tp.List[AudioMeta] = self._filter_duration(meta)
        assert len(self.meta)  # Fail fast if all data has been filtered.
        self.total_duration = sum(d.duration for d in self.meta)

        if segment_duration is None:
            num_samples = len(self.meta)
        self.num_samples = num_samples
        self.shuffle = shuffle
        self.sample_rate = sample_rate
        self.channels = channels
        self.pad = pad
        self.sample_on_weight = sample_on_weight
        self.sample_on_duration = sample_on_duration
        self.sampling_probabilities = self._get_sampling_probabilities()
        self.max_read_retry = max_read_retry
        self.return_info = return_info

    def __len__(self):
        return self.num_samples

    def _get_sampling_probabilities(self, normalized: bool = True):
        """Return the sampling probabilities for each file inside `self.meta`.
        """
        scores: tp.List[float] = []
        for file_meta in self.meta:
            score = 1.
            if self.sample_on_weight and file_meta.weight is not None:
                score *= file_meta.weight
            if self.sample_on_duration:
                score *= file_meta.duration
            scores.append(score)
        probabilities = torch.tensor(scores)
        if normalized:
            probabilities /= probabilities.sum()
        return probabilities

    def sample_file(self, rng: torch.Generator) -> AudioMeta:
        """Sample a given file from `self.meta`. Can be overriden in subclasses.
        This is only called if `segment_duration` is not None.

        You must use the provided random number generator `rng` for reproducibility.
        """
        if not self.sample_on_weight and not self.sample_on_duration:
            file_index = int(torch.randint(len(self.sampling_probabilities), (1,), generator=rng).item())
        else:
            file_index = int(torch.multinomial(self.sampling_probabilities, 1, generator=rng).item())

        return self.meta[file_index]

    def __getitem__(self, index: int) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, SegmentInfo]]:
        if self.segment_duration is None:
            file_meta = self.meta[index]
            out, sr = audio_read(file_meta.path)
            out = convert_audio(out, sr, self.sample_rate, self.channels)
            n_frames = out.shape[-1]
            segment_info = SegmentInfo(file_meta, seek_time=0., n_frames=n_frames, total_frames=n_frames,
                                       sample_rate=self.sample_rate)
        else:
            rng = torch.Generator()
            if self.shuffle:
                # We use index, plus extra randomness
                rng.manual_seed(index + self.num_samples * random.randint(0, 2**24))
            else:
                # We only use index
                rng.manual_seed(index)

            for retry in range(self.max_read_retry):
                file_meta = self.sample_file(rng)
                # We add some variance in the file position even if audio file is smaller than segment
                # without ending up with empty segments
                max_seek = max(0, file_meta.duration - self.segment_duration * self.min_segment_ratio)
                seek_time = torch.rand(1, generator=rng).item() * max_seek
                try:
                    out, sr = audio_read(file_meta.path, seek_time, self.segment_duration, pad=False)
                    out = convert_audio(out, sr, self.sample_rate, self.channels)
                    n_frames = out.shape[-1]
                    target_frames = int(self.segment_duration * self.sample_rate)
                    if self.pad:
                        out = F.pad(out, (0, target_frames - n_frames))
                    segment_info = SegmentInfo(file_meta, seek_time, n_frames=n_frames, total_frames=target_frames,
                                               sample_rate=self.sample_rate)
                except Exception as exc:
                    logger.warning("Error opening file %s: %r", file_meta.path, exc)
                    if retry == self.max_read_retry - 1:
                        raise
                else:
                    break

        if self.return_info:
            # Returns the wav and additional information on the wave segment
            return out, segment_info
        else:
            return out

    def collater(self, samples):
        """The collater function has to be provided to the dataloader
        if AudioDataset has return_info=True in order to properly collate
        the samples of a batch.
        """
        if self.segment_duration is None and len(samples) > 1:
            assert self.pad, "Must allow padding when batching examples of different durations."

        # In this case the audio reaching the collater is of variable length as segment_duration=None.
        to_pad = self.segment_duration is None and self.pad
        if to_pad:
            max_len = max([wav.shape[-1] for wav, _ in samples])

            def _pad_wav(wav):
                return F.pad(wav, (0, max_len - wav.shape[-1]))

        if self.return_info:
            if len(samples) > 0:
                assert len(samples[0]) == 2
                assert isinstance(samples[0][0], torch.Tensor)
                assert isinstance(samples[0][1], SegmentInfo)

            wavs = [wav for wav, _ in samples]
            segment_infos = [copy.deepcopy(info) for _, info in samples]

            if to_pad:
                # Each wav could be of a different duration as they are not segmented.
                for i in range(len(samples)):
                    # Determines the total legth of the signal with padding, so we update here as we pad.
                    segment_infos[i].total_frames = max_len
                    wavs[i] = _pad_wav(wavs[i])

            wav = torch.stack(wavs)
            return wav, segment_infos
        else:
            assert isinstance(samples[0], torch.Tensor)
            if to_pad:
                samples = [_pad_wav(s) for s in samples]
            return torch.stack(samples)

    def _filter_duration(self, meta: tp.List[AudioMeta]) -> tp.List[AudioMeta]:
        """Filters out audio files with short durations.
        Removes from meta files that have durations that will not allow to samples examples from them.
        """
        orig_len = len(meta)

        # Filter data that is too short.
        if self.min_audio_duration is not None:
            meta = [m for m in meta if m.duration >= self.min_audio_duration]

        # Filter data that is too long.
        if self.max_audio_duration is not None:
            meta = [m for m in meta if m.duration <= self.max_audio_duration]

        filtered_len = len(meta)
        removed_percentage = 100*(1-float(filtered_len)/orig_len)
        msg = 'Removed %.2f percent of the data because it was too short or too long.' % removed_percentage
        if removed_percentage < 10:
            logging.debug(msg)
        else:
            logging.warning(msg)
        return meta

    @classmethod
    def from_meta(cls, root: tp.Union[str, Path], **kwargs):
        """Instantiate AudioDataset from a path to a directory containing a manifest as a jsonl file.

        Args:
            root (str or Path): Path to root folder containing audio files.
            kwargs: Additional keyword arguments for the AudioDataset.
        """
        root = Path(root)
        if root.is_dir():
            if (root / 'data.jsonl').exists():
                root = root / 'data.jsonl'
            elif (root / 'data.jsonl.gz').exists():
                root = root / 'data.jsonl.gz'
            else:
                raise ValueError("Don't know where to read metadata from in the dir. "
                                 "Expecting either a data.jsonl or data.jsonl.gz file but none found.")
        meta = load_audio_meta(root)
        return cls(meta, **kwargs)

    @classmethod
    def from_path(cls, root: tp.Union[str, Path], minimal_meta: bool = True,
                  exts: tp.List[str] = DEFAULT_EXTS, **kwargs):
        """Instantiate AudioDataset from a path containing (possibly nested) audio files.

        Args:
            root (str or Path): Path to root folder containing audio files.
            minimal_meta (bool): Whether to only load minimal metadata or not.
            exts (list of str): Extensions for audio files.
            kwargs: Additional keyword arguments for the AudioDataset.
        """
        root = Path(root)
        if root.is_file():
            meta = load_audio_meta(root, resolve=True)
        else:
            meta = find_audio_files(root, exts, minimal=minimal_meta, resolve=True)
        return cls(meta, **kwargs)


def main():
    logging.basicConfig(stream=sys.stderr, level=logging.INFO)
    parser = argparse.ArgumentParser(
        prog='audio_dataset',
        description='Generate .jsonl files by scanning a folder.')
    parser.add_argument('root', help='Root folder with all the audio files')
    parser.add_argument('output_meta_file',
                        help='Output file to store the metadata, ')
    parser.add_argument('--complete',
                        action='store_false', dest='minimal', default=True,
                        help='Retrieve all metadata, even the one that are expansive '
                             'to compute (e.g. normalization).')
    parser.add_argument('--resolve',
                        action='store_true', default=False,
                        help='Resolve the paths to be absolute and with no symlinks.')
    parser.add_argument('--workers',
                        default=10, type=int,
                        help='Number of workers.')
    args = parser.parse_args()
    meta = find_audio_files(args.root, DEFAULT_EXTS, progress=True,
                            resolve=args.resolve, minimal=args.minimal, workers=args.workers)
    save_audio_meta(args.output_meta_file, meta)


if __name__ == '__main__':
    main()