File size: 7,367 Bytes
1239b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
gmflow_dir = os.path.join(parent_dir, 'gmflow_module')
sys.path.insert(0, gmflow_dir)
from gmflow.gmflow import GMFlow # noqa: E702 E402 F401
from utils.utils import InputPadder # noqa: E702 E402
import huggingface_hub
repo_name = 'Anonymous-sub/Rerender'
global_device = 'cuda' if torch.cuda.is_available() else 'cpu'
gmflow_path = huggingface_hub.hf_hub_download(
repo_name, 'models/gmflow_sintel-0c07dcb3.pth', local_dir='./')
def coords_grid(b, h, w, homogeneous=False, device=None):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W]
stacks = [x, y]
if homogeneous:
ones = torch.ones_like(x) # [H, W]
stacks.append(ones)
grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W]
grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W]
if device is not None:
grid = grid.to(global_device)
return grid
def bilinear_sample(img,
sample_coords,
mode='bilinear',
padding_mode='zeros',
return_mask=False):
# img: [B, C, H, W]
# sample_coords: [B, 2, H, W] in image scale
if sample_coords.size(1) != 2: # [B, H, W, 2]
sample_coords = sample_coords.permute(0, 3, 1, 2)
b, _, h, w = sample_coords.shape
# Normalize to [-1, 1]
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1
grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2]
img = F.grid_sample(img,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=True)
if return_mask:
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (
y_grid <= 1) # [B, H, W]
return img, mask
return img
def flow_warp(feature,
flow,
mask=False,
mode='bilinear',
padding_mode='zeros'):
b, c, h, w = feature.size()
assert flow.size(1) == 2
grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W]
return bilinear_sample(feature,
grid,
mode=mode,
padding_mode=padding_mode,
return_mask=mask)
def forward_backward_consistency_check(fwd_flow,
bwd_flow,
alpha=0.01,
beta=0.5):
# fwd_flow, bwd_flow: [B, 2, H, W]
# alpha and beta values are following UnFlow
# (https://arxiv.org/abs/1711.07837)
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow,
dim=1) # [B, H, W]
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W]
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W]
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W]
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)
threshold = alpha * flow_mag + beta
fwd_occ = (diff_fwd > threshold).float() # [B, H, W]
bwd_occ = (diff_bwd > threshold).float()
return fwd_occ, bwd_occ
@torch.no_grad()
def get_warped_and_mask(flow_model,
image1,
image2,
image3=None,
pixel_consistency=False):
if image3 is None:
image3 = image1
padder = InputPadder(image1.shape, padding_factor=8)
image1, image2 = padder.pad(image1[None].to(global_device),
image2[None].to(global_device))
results_dict = flow_model(image1,
image2,
attn_splits_list=[2],
corr_radius_list=[-1],
prop_radius_list=[-1],
pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
fwd_occ, bwd_occ = forward_backward_consistency_check(
fwd_flow, bwd_flow) # [1, H, W] float
if pixel_consistency:
warped_image1 = flow_warp(image1, bwd_flow)
bwd_occ = torch.clamp(
bwd_occ +
(abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0,
1).unsqueeze(0)
warped_results = flow_warp(image3, bwd_flow)
return warped_results, bwd_occ, bwd_flow
class FlowCalc():
def __init__(self, model_path='./models/gmflow_sintel-0c07dcb3.pth'):
flow_model = GMFlow(
feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to(global_device)
checkpoint = torch.load(model_path,
map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
self.model = flow_model
@torch.no_grad()
def get_flow(self, image1, image2, save_path=None):
if save_path is not None and os.path.exists(save_path):
bwd_flow = read_flow(save_path)
return bwd_flow
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
padder = InputPadder(image1.shape, padding_factor=8)
image1, image2 = padder.pad(image1[None].to(global_device),
image2[None].to(global_device))
results_dict = self.model(image1,
image2,
attn_splits_list=[2],
corr_radius_list=[-1],
prop_radius_list=[-1],
pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
if save_path is not None:
flow_np = bwd_flow.cpu().numpy()
np.save(save_path, flow_np)
return bwd_flow
def warp(self, img, flow, mode='bilinear'):
expand = False
if len(img.shape) == 2:
expand = True
img = np.expand_dims(img, 2)
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
dtype = img.dtype
img = img.to(torch.float)
res = flow_warp(img, flow, mode=mode)
res = res.to(dtype)
res = res[0].cpu().permute(1, 2, 0).numpy()
if expand:
res = res[:, :, 0]
return res
def read_flow(save_path):
flow_np = np.load(save_path)
bwd_flow = torch.from_numpy(flow_np)
return bwd_flow
flow_calc = FlowCalc()
|