File size: 26,283 Bytes
1239b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
from PIL import Image
import os
import time
import numpy as np
import torch
import torch.nn.functional as F

import data
from utils import frame_utils
from utils.flow_viz import save_vis_flow_tofile

from utils.utils import InputPadder, compute_out_of_boundary_mask
from glob import glob
from gmflow.geometry import forward_backward_consistency_check


@torch.no_grad()
def create_sintel_submission(model,

                             output_path='sintel_submission',

                             padding_factor=8,

                             save_vis_flow=False,

                             no_save_flo=False,

                             attn_splits_list=None,

                             corr_radius_list=None,

                             prop_radius_list=None,

                             ):
    """ Create submission for the Sintel leaderboard """
    model.eval()
    for dstype in ['clean', 'final']:
        test_dataset = data.MpiSintel(split='test', aug_params=None, dstype=dstype)

        flow_prev, sequence_prev = None, None
        for test_id in range(len(test_dataset)):
            image1, image2, (sequence, frame) = test_dataset[test_id]
            if sequence != sequence_prev:
                flow_prev = None

            padder = InputPadder(image1.shape, padding_factor=padding_factor)
            image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())

            results_dict = model(image1, image2,
                                 attn_splits_list=attn_splits_list,
                                 corr_radius_list=corr_radius_list,
                                 prop_radius_list=prop_radius_list,
                                 )

            flow_pr = results_dict['flow_preds'][-1]  # [B, 2, H, W]

            flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()

            output_dir = os.path.join(output_path, dstype, sequence)
            output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1))

            if not os.path.exists(output_dir):
                os.makedirs(output_dir)

            if not no_save_flo:
                frame_utils.writeFlow(output_file, flow)
            sequence_prev = sequence

            # Save vis flow
            if save_vis_flow:
                vis_flow_file = output_file.replace('.flo', '.png')
                save_vis_flow_tofile(flow, vis_flow_file)


@torch.no_grad()
def create_kitti_submission(model,

                            output_path='kitti_submission',

                            padding_factor=8,

                            save_vis_flow=False,

                            attn_splits_list=None,

                            corr_radius_list=None,

                            prop_radius_list=None,

                            ):
    """ Create submission for the Sintel leaderboard """
    model.eval()
    test_dataset = data.KITTI(split='testing', aug_params=None)

    if not os.path.exists(output_path):
        os.makedirs(output_path)

    for test_id in range(len(test_dataset)):
        image1, image2, (frame_id,) = test_dataset[test_id]
        padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor)
        image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())

        results_dict = model(image1, image2,
                             attn_splits_list=attn_splits_list,
                             corr_radius_list=corr_radius_list,
                             prop_radius_list=prop_radius_list,
                             )

        flow_pr = results_dict['flow_preds'][-1]

        flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()

        output_filename = os.path.join(output_path, frame_id)

        if save_vis_flow:
            vis_flow_file = output_filename
            save_vis_flow_tofile(flow, vis_flow_file)
        else:
            frame_utils.writeFlowKITTI(output_filename, flow)


@torch.no_grad()
def validate_chairs(model,

                    with_speed_metric=False,

                    attn_splits_list=False,

                    corr_radius_list=False,

                    prop_radius_list=False,

                    ):
    """ Perform evaluation on the FlyingChairs (test) split """
    model.eval()
    epe_list = []
    results = {}

    if with_speed_metric:
        s0_10_list = []
        s10_40_list = []
        s40plus_list = []

    val_dataset = data.FlyingChairs(split='validation')

    print('Number of validation image pairs: %d' % len(val_dataset))

    for val_id in range(len(val_dataset)):
        image1, image2, flow_gt, _ = val_dataset[val_id]

        image1 = image1[None].cuda()
        image2 = image2[None].cuda()

        results_dict = model(image1, image2,
                             attn_splits_list=attn_splits_list,
                             corr_radius_list=corr_radius_list,
                             prop_radius_list=prop_radius_list,
                             )

        flow_pr = results_dict['flow_preds'][-1]  # [B, 2, H, W]

        assert flow_pr.size()[-2:] == flow_gt.size()[-2:]

        epe = torch.sum((flow_pr[0].cpu() - flow_gt) ** 2, dim=0).sqrt()
        epe_list.append(epe.view(-1).numpy())

        if with_speed_metric:
            flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
            valid_mask = (flow_gt_speed < 10)
            if valid_mask.max() > 0:
                s0_10_list.append(epe[valid_mask].cpu().numpy())

            valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40)
            if valid_mask.max() > 0:
                s10_40_list.append(epe[valid_mask].cpu().numpy())

            valid_mask = (flow_gt_speed > 40)
            if valid_mask.max() > 0:
                s40plus_list.append(epe[valid_mask].cpu().numpy())

    epe_all = np.concatenate(epe_list)
    epe = np.mean(epe_all)
    px1 = np.mean(epe_all > 1)
    px3 = np.mean(epe_all > 3)
    px5 = np.mean(epe_all > 5)
    print("Validation Chairs EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (epe, px1, px3, px5))
    results['chairs_epe'] = epe
    results['chairs_1px'] = px1
    results['chairs_3px'] = px3
    results['chairs_5px'] = px5

    if with_speed_metric:
        s0_10 = np.mean(np.concatenate(s0_10_list))
        s10_40 = np.mean(np.concatenate(s10_40_list))
        s40plus = np.mean(np.concatenate(s40plus_list))

        print("Validation Chairs s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
            s0_10,
            s10_40,
            s40plus))

        results['chairs_s0_10'] = s0_10
        results['chairs_s10_40'] = s10_40
        results['chairs_s40+'] = s40plus

    return results


@torch.no_grad()
def validate_things(model,

                    padding_factor=8,

                    with_speed_metric=False,

                    max_val_flow=400,

                    val_things_clean_only=True,

                    attn_splits_list=False,

                    corr_radius_list=False,

                    prop_radius_list=False,

                    ):
    """ Peform validation using the Things (test) split """
    model.eval()
    results = {}

    for dstype in ['frames_cleanpass', 'frames_finalpass']:
        if val_things_clean_only:
            if dstype == 'frames_finalpass':
                continue

        val_dataset = data.FlyingThings3D(dstype=dstype, test_set=True, validate_subset=True,
                                          )
        print('Number of validation image pairs: %d' % len(val_dataset))
        epe_list = []

        if with_speed_metric:
            s0_10_list = []
            s10_40_list = []
            s40plus_list = []

        for val_id in range(len(val_dataset)):
            image1, image2, flow_gt, valid_gt = val_dataset[val_id]
            image1 = image1[None].cuda()
            image2 = image2[None].cuda()

            padder = InputPadder(image1.shape, padding_factor=padding_factor)
            image1, image2 = padder.pad(image1, image2)

            results_dict = model(image1, image2,
                                 attn_splits_list=attn_splits_list,
                                 corr_radius_list=corr_radius_list,
                                 prop_radius_list=prop_radius_list,
                                 )
            flow_pr = results_dict['flow_preds'][-1]

            flow = padder.unpad(flow_pr[0]).cpu()

            # Evaluation on flow <= max_val_flow
            flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
            valid_gt = valid_gt * (flow_gt_speed < max_val_flow)
            valid_gt = valid_gt.contiguous()

            epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
            val = valid_gt >= 0.5
            epe_list.append(epe[val].cpu().numpy())

            if with_speed_metric:
                valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s0_10_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s10_40_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s40plus_list.append(epe[valid_mask].cpu().numpy())

        epe_list = np.mean(np.concatenate(epe_list))

        epe = np.mean(epe_list)

        if dstype == 'frames_cleanpass':
            dstype = 'things_clean'
        if dstype == 'frames_finalpass':
            dstype = 'things_final'

        print("Validation Things test set (%s) EPE: %.3f" % (dstype, epe))
        results[dstype + '_epe'] = epe

        if with_speed_metric:
            s0_10 = np.mean(np.concatenate(s0_10_list))
            s10_40 = np.mean(np.concatenate(s10_40_list))
            s40plus = np.mean(np.concatenate(s40plus_list))

            print("Validation Things test (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
                dstype, s0_10,
                s10_40,
                s40plus))

            results[dstype + '_s0_10'] = s0_10
            results[dstype + '_s10_40'] = s10_40
            results[dstype + '_s40+'] = s40plus

    return results


@torch.no_grad()
def validate_sintel(model,

                    count_time=False,

                    padding_factor=8,

                    with_speed_metric=False,

                    evaluate_matched_unmatched=False,

                    attn_splits_list=False,

                    corr_radius_list=False,

                    prop_radius_list=False,

                    ):
    """ Peform validation using the Sintel (train) split """
    model.eval()
    results = {}

    if count_time:
        total_time = 0
        num_runs = 100

    for dstype in ['clean', 'final']:
        val_dataset = data.MpiSintel(split='training', dstype=dstype,
                                     load_occlusion=evaluate_matched_unmatched,
                                     )

        print('Number of validation image pairs: %d' % len(val_dataset))
        epe_list = []

        if evaluate_matched_unmatched:
            matched_epe_list = []
            unmatched_epe_list = []

        if with_speed_metric:
            s0_10_list = []
            s10_40_list = []
            s40plus_list = []

        for val_id in range(len(val_dataset)):
            if evaluate_matched_unmatched:
                image1, image2, flow_gt, valid, noc_valid = val_dataset[val_id]

                # compuate in-image-plane valid mask
                in_image_valid = compute_out_of_boundary_mask(flow_gt.unsqueeze(0)).squeeze(0)  # [H, W]

            else:
                image1, image2, flow_gt, _ = val_dataset[val_id]

            image1 = image1[None].cuda()
            image2 = image2[None].cuda()

            padder = InputPadder(image1.shape, padding_factor=padding_factor)
            image1, image2 = padder.pad(image1, image2)

            if count_time and val_id >= 5:  # 5 warmup
                torch.cuda.synchronize()
                time_start = time.perf_counter()

            results_dict = model(image1, image2,
                                 attn_splits_list=attn_splits_list,
                                 corr_radius_list=corr_radius_list,
                                 prop_radius_list=prop_radius_list,
                                 )

            # useful when using parallel branches
            flow_pr = results_dict['flow_preds'][-1]

            if count_time and val_id >= 5:
                torch.cuda.synchronize()
                total_time += time.perf_counter() - time_start

                if val_id >= num_runs + 4:
                    break

            flow = padder.unpad(flow_pr[0]).cpu()

            epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
            epe_list.append(epe.view(-1).numpy())

            if evaluate_matched_unmatched:
                matched_valid_mask = (noc_valid > 0.5) & (in_image_valid > 0.5)

                if matched_valid_mask.max() > 0:
                    matched_epe_list.append(epe[matched_valid_mask].cpu().numpy())
                    unmatched_epe_list.append(epe[~matched_valid_mask].cpu().numpy())

            if with_speed_metric:
                flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
                valid_mask = (flow_gt_speed < 10)
                if valid_mask.max() > 0:
                    s0_10_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40)
                if valid_mask.max() > 0:
                    s10_40_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed > 40)
                if valid_mask.max() > 0:
                    s40plus_list.append(epe[valid_mask].cpu().numpy())

        epe_all = np.concatenate(epe_list)
        epe = np.mean(epe_all)
        px1 = np.mean(epe_all > 1)
        px3 = np.mean(epe_all > 3)
        px5 = np.mean(epe_all > 5)

        dstype_ori = dstype

        print("Validation Sintel (%s) EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (dstype_ori, epe, px1, px3, px5))

        dstype = 'sintel_' + dstype

        results[dstype + '_epe'] = np.mean(epe_list)
        results[dstype + '_1px'] = px1
        results[dstype + '_3px'] = px3
        results[dstype + '_5px'] = px5

        if with_speed_metric:
            s0_10 = np.mean(np.concatenate(s0_10_list))
            s10_40 = np.mean(np.concatenate(s10_40_list))
            s40plus = np.mean(np.concatenate(s40plus_list))

            print("Validation Sintel (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
                dstype_ori, s0_10,
                s10_40,
                s40plus))

            results[dstype + '_s0_10'] = s0_10
            results[dstype + '_s10_40'] = s10_40
            results[dstype + '_s40+'] = s40plus

        if count_time:
            print('Time: %.6fs' % (total_time / num_runs))
            break  # only the clean pass when counting time

        if evaluate_matched_unmatched:
            matched_epe = np.mean(np.concatenate(matched_epe_list))
            unmatched_epe = np.mean(np.concatenate(unmatched_epe_list))

            print('Validatation Sintel (%s) matched epe: %.3f, unmatched epe: %.3f' % (
                dstype_ori, matched_epe, unmatched_epe))

            results[dstype + '_matched'] = matched_epe
            results[dstype + '_unmatched'] = unmatched_epe

    return results


@torch.no_grad()
def validate_kitti(model,

                   padding_factor=8,

                   with_speed_metric=False,

                   average_over_pixels=True,

                   attn_splits_list=False,

                   corr_radius_list=False,

                   prop_radius_list=False,

                   ):
    """ Peform validation using the KITTI-2015 (train) split """
    model.eval()

    val_dataset = data.KITTI(split='training')
    print('Number of validation image pairs: %d' % len(val_dataset))

    out_list, epe_list = [], []
    results = {}

    if with_speed_metric:
        if average_over_pixels:
            s0_10_list = []
            s10_40_list = []
            s40plus_list = []
        else:
            s0_10_epe_sum = 0
            s0_10_valid_samples = 0
            s10_40_epe_sum = 0
            s10_40_valid_samples = 0
            s40plus_epe_sum = 0
            s40plus_valid_samples = 0

    for val_id in range(len(val_dataset)):
        image1, image2, flow_gt, valid_gt = val_dataset[val_id]
        image1 = image1[None].cuda()
        image2 = image2[None].cuda()

        padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor)
        image1, image2 = padder.pad(image1, image2)

        results_dict = model(image1, image2,
                             attn_splits_list=attn_splits_list,
                             corr_radius_list=corr_radius_list,
                             prop_radius_list=prop_radius_list,
                             )

        # useful when using parallel branches
        flow_pr = results_dict['flow_preds'][-1]

        flow = padder.unpad(flow_pr[0]).cpu()

        epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
        mag = torch.sum(flow_gt ** 2, dim=0).sqrt()

        if with_speed_metric:
            # flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
            flow_gt_speed = mag

            if average_over_pixels:
                valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5)  # note KITTI GT is sparse
                if valid_mask.max() > 0:
                    s0_10_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s10_40_list.append(epe[valid_mask].cpu().numpy())

                valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s40plus_list.append(epe[valid_mask].cpu().numpy())

            else:
                valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5)  # note KITTI GT is sparse
                if valid_mask.max() > 0:
                    s0_10_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
                    s0_10_valid_samples += 1

                valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s10_40_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
                    s10_40_valid_samples += 1

                valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
                if valid_mask.max() > 0:
                    s40plus_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
                    s40plus_valid_samples += 1

        epe = epe.view(-1)
        mag = mag.view(-1)
        val = valid_gt.view(-1) >= 0.5

        out = ((epe > 3.0) & ((epe / mag) > 0.05)).float()

        if average_over_pixels:
            epe_list.append(epe[val].cpu().numpy())
        else:
            epe_list.append(epe[val].mean().item())

        out_list.append(out[val].cpu().numpy())

    if average_over_pixels:
        epe_list = np.concatenate(epe_list)
    else:
        epe_list = np.array(epe_list)
    out_list = np.concatenate(out_list)

    epe = np.mean(epe_list)
    f1 = 100 * np.mean(out_list)

    print("Validation KITTI EPE: %.3f, F1-all: %.3f" % (epe, f1))
    results['kitti_epe'] = epe
    results['kitti_f1'] = f1

    if with_speed_metric:
        if average_over_pixels:
            s0_10 = np.mean(np.concatenate(s0_10_list))
            s10_40 = np.mean(np.concatenate(s10_40_list))
            s40plus = np.mean(np.concatenate(s40plus_list))
        else:
            s0_10 = s0_10_epe_sum / s0_10_valid_samples
            s10_40 = s10_40_epe_sum / s10_40_valid_samples
            s40plus = s40plus_epe_sum / s40plus_valid_samples

        print("Validation KITTI s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
            s0_10,
            s10_40,
            s40plus))

        results['kitti_s0_10'] = s0_10
        results['kitti_s10_40'] = s10_40
        results['kitti_s40+'] = s40plus

    return results


@torch.no_grad()
def inference_on_dir(model,

                     inference_dir,

                     output_path='output',

                     padding_factor=8,

                     inference_size=None,

                     paired_data=False,  # dir of paired testdata instead of a sequence

                     save_flo_flow=False,  # save as .flo for quantative evaluation

                     attn_splits_list=None,

                     corr_radius_list=None,

                     prop_radius_list=None,

                     pred_bidir_flow=False,

                     fwd_bwd_consistency_check=False,

                     ):
    """ Inference on a directory """
    model.eval()

    if fwd_bwd_consistency_check:
        assert pred_bidir_flow

    if not os.path.exists(output_path):
        os.makedirs(output_path)

    filenames = sorted(glob(inference_dir + '/*'))
    print('%d images found' % len(filenames))

    stride = 2 if paired_data else 1

    if paired_data:
        assert len(filenames) % 2 == 0

    for test_id in range(0, len(filenames) - 1, stride):

        image1 = frame_utils.read_gen(filenames[test_id])
        image2 = frame_utils.read_gen(filenames[test_id + 1])

        image1 = np.array(image1).astype(np.uint8)
        image2 = np.array(image2).astype(np.uint8)

        if len(image1.shape) == 2:  # gray image, for example, HD1K
            image1 = np.tile(image1[..., None], (1, 1, 3))
            image2 = np.tile(image2[..., None], (1, 1, 3))
        else:
            image1 = image1[..., :3]
            image2 = image2[..., :3]

        image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
        image2 = torch.from_numpy(image2).permute(2, 0, 1).float()

        if inference_size is None:
            padder = InputPadder(image1.shape, padding_factor=padding_factor)
            image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
        else:
            image1, image2 = image1[None].cuda(), image2[None].cuda()

        # resize before inference
        if inference_size is not None:
            assert isinstance(inference_size, list) or isinstance(inference_size, tuple)
            ori_size = image1.shape[-2:]
            image1 = F.interpolate(image1, size=inference_size, mode='bilinear',
                                   align_corners=True)
            image2 = F.interpolate(image2, size=inference_size, mode='bilinear',
                                   align_corners=True)

        results_dict = model(image1, image2,
                             attn_splits_list=attn_splits_list,
                             corr_radius_list=corr_radius_list,
                             prop_radius_list=prop_radius_list,
                             pred_bidir_flow=pred_bidir_flow,
                             )

        flow_pr = results_dict['flow_preds'][-1]  # [B, 2, H, W]

        # resize back
        if inference_size is not None:
            flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear',
                                    align_corners=True)
            flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1]
            flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2]

        if inference_size is None:
            flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()  # [H, W, 2]
        else:
            flow = flow_pr[0].permute(1, 2, 0).cpu().numpy()  # [H, W, 2]

        output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow.png')

        # save vis flow
        save_vis_flow_tofile(flow, output_file)

        # also predict backward flow
        if pred_bidir_flow:
            assert flow_pr.size(0) == 2  # [2, H, W, 2]

            if inference_size is None:
                flow_bwd = padder.unpad(flow_pr[1]).permute(1, 2, 0).cpu().numpy()  # [H, W, 2]
            else:
                flow_bwd = flow_pr[1].permute(1, 2, 0).cpu().numpy()  # [H, W, 2]

            output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow_bwd.png')

            # save vis flow
            save_vis_flow_tofile(flow_bwd, output_file)

            # forward-backward consistency check
            # occlusion is 1
            if fwd_bwd_consistency_check:
                if inference_size is None:
                    fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0)  # [1, 2, H, W]
                    bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0)  # [1, 2, H, W]
                else:
                    fwd_flow = flow_pr[0].unsqueeze(0)
                    bwd_flow = flow_pr[1].unsqueeze(0)

                fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow)  # [1, H, W] float

                fwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ.png')
                bwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ_bwd.png')

                Image.fromarray((fwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(fwd_occ_file)
                Image.fromarray((bwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(bwd_occ_file)

        if save_flo_flow:
            output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_pred.flo')
            frame_utils.writeFlow(output_file, flow)