File size: 26,283 Bytes
1239b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
from PIL import Image
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
import data
from utils import frame_utils
from utils.flow_viz import save_vis_flow_tofile
from utils.utils import InputPadder, compute_out_of_boundary_mask
from glob import glob
from gmflow.geometry import forward_backward_consistency_check
@torch.no_grad()
def create_sintel_submission(model,
output_path='sintel_submission',
padding_factor=8,
save_vis_flow=False,
no_save_flo=False,
attn_splits_list=None,
corr_radius_list=None,
prop_radius_list=None,
):
""" Create submission for the Sintel leaderboard """
model.eval()
for dstype in ['clean', 'final']:
test_dataset = data.MpiSintel(split='test', aug_params=None, dstype=dstype)
flow_prev, sequence_prev = None, None
for test_id in range(len(test_dataset)):
image1, image2, (sequence, frame) = test_dataset[test_id]
if sequence != sequence_prev:
flow_prev = None
padder = InputPadder(image1.shape, padding_factor=padding_factor)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
output_dir = os.path.join(output_path, dstype, sequence)
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not no_save_flo:
frame_utils.writeFlow(output_file, flow)
sequence_prev = sequence
# Save vis flow
if save_vis_flow:
vis_flow_file = output_file.replace('.flo', '.png')
save_vis_flow_tofile(flow, vis_flow_file)
@torch.no_grad()
def create_kitti_submission(model,
output_path='kitti_submission',
padding_factor=8,
save_vis_flow=False,
attn_splits_list=None,
corr_radius_list=None,
prop_radius_list=None,
):
""" Create submission for the Sintel leaderboard """
model.eval()
test_dataset = data.KITTI(split='testing', aug_params=None)
if not os.path.exists(output_path):
os.makedirs(output_path)
for test_id in range(len(test_dataset)):
image1, image2, (frame_id,) = test_dataset[test_id]
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
flow_pr = results_dict['flow_preds'][-1]
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
output_filename = os.path.join(output_path, frame_id)
if save_vis_flow:
vis_flow_file = output_filename
save_vis_flow_tofile(flow, vis_flow_file)
else:
frame_utils.writeFlowKITTI(output_filename, flow)
@torch.no_grad()
def validate_chairs(model,
with_speed_metric=False,
attn_splits_list=False,
corr_radius_list=False,
prop_radius_list=False,
):
""" Perform evaluation on the FlyingChairs (test) split """
model.eval()
epe_list = []
results = {}
if with_speed_metric:
s0_10_list = []
s10_40_list = []
s40plus_list = []
val_dataset = data.FlyingChairs(split='validation')
print('Number of validation image pairs: %d' % len(val_dataset))
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, _ = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
assert flow_pr.size()[-2:] == flow_gt.size()[-2:]
epe = torch.sum((flow_pr[0].cpu() - flow_gt) ** 2, dim=0).sqrt()
epe_list.append(epe.view(-1).numpy())
if with_speed_metric:
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
valid_mask = (flow_gt_speed < 10)
if valid_mask.max() > 0:
s0_10_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40)
if valid_mask.max() > 0:
s10_40_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed > 40)
if valid_mask.max() > 0:
s40plus_list.append(epe[valid_mask].cpu().numpy())
epe_all = np.concatenate(epe_list)
epe = np.mean(epe_all)
px1 = np.mean(epe_all > 1)
px3 = np.mean(epe_all > 3)
px5 = np.mean(epe_all > 5)
print("Validation Chairs EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (epe, px1, px3, px5))
results['chairs_epe'] = epe
results['chairs_1px'] = px1
results['chairs_3px'] = px3
results['chairs_5px'] = px5
if with_speed_metric:
s0_10 = np.mean(np.concatenate(s0_10_list))
s10_40 = np.mean(np.concatenate(s10_40_list))
s40plus = np.mean(np.concatenate(s40plus_list))
print("Validation Chairs s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
s0_10,
s10_40,
s40plus))
results['chairs_s0_10'] = s0_10
results['chairs_s10_40'] = s10_40
results['chairs_s40+'] = s40plus
return results
@torch.no_grad()
def validate_things(model,
padding_factor=8,
with_speed_metric=False,
max_val_flow=400,
val_things_clean_only=True,
attn_splits_list=False,
corr_radius_list=False,
prop_radius_list=False,
):
""" Peform validation using the Things (test) split """
model.eval()
results = {}
for dstype in ['frames_cleanpass', 'frames_finalpass']:
if val_things_clean_only:
if dstype == 'frames_finalpass':
continue
val_dataset = data.FlyingThings3D(dstype=dstype, test_set=True, validate_subset=True,
)
print('Number of validation image pairs: %d' % len(val_dataset))
epe_list = []
if with_speed_metric:
s0_10_list = []
s10_40_list = []
s40plus_list = []
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, valid_gt = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape, padding_factor=padding_factor)
image1, image2 = padder.pad(image1, image2)
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
flow_pr = results_dict['flow_preds'][-1]
flow = padder.unpad(flow_pr[0]).cpu()
# Evaluation on flow <= max_val_flow
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
valid_gt = valid_gt * (flow_gt_speed < max_val_flow)
valid_gt = valid_gt.contiguous()
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
val = valid_gt >= 0.5
epe_list.append(epe[val].cpu().numpy())
if with_speed_metric:
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s0_10_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s10_40_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s40plus_list.append(epe[valid_mask].cpu().numpy())
epe_list = np.mean(np.concatenate(epe_list))
epe = np.mean(epe_list)
if dstype == 'frames_cleanpass':
dstype = 'things_clean'
if dstype == 'frames_finalpass':
dstype = 'things_final'
print("Validation Things test set (%s) EPE: %.3f" % (dstype, epe))
results[dstype + '_epe'] = epe
if with_speed_metric:
s0_10 = np.mean(np.concatenate(s0_10_list))
s10_40 = np.mean(np.concatenate(s10_40_list))
s40plus = np.mean(np.concatenate(s40plus_list))
print("Validation Things test (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
dstype, s0_10,
s10_40,
s40plus))
results[dstype + '_s0_10'] = s0_10
results[dstype + '_s10_40'] = s10_40
results[dstype + '_s40+'] = s40plus
return results
@torch.no_grad()
def validate_sintel(model,
count_time=False,
padding_factor=8,
with_speed_metric=False,
evaluate_matched_unmatched=False,
attn_splits_list=False,
corr_radius_list=False,
prop_radius_list=False,
):
""" Peform validation using the Sintel (train) split """
model.eval()
results = {}
if count_time:
total_time = 0
num_runs = 100
for dstype in ['clean', 'final']:
val_dataset = data.MpiSintel(split='training', dstype=dstype,
load_occlusion=evaluate_matched_unmatched,
)
print('Number of validation image pairs: %d' % len(val_dataset))
epe_list = []
if evaluate_matched_unmatched:
matched_epe_list = []
unmatched_epe_list = []
if with_speed_metric:
s0_10_list = []
s10_40_list = []
s40plus_list = []
for val_id in range(len(val_dataset)):
if evaluate_matched_unmatched:
image1, image2, flow_gt, valid, noc_valid = val_dataset[val_id]
# compuate in-image-plane valid mask
in_image_valid = compute_out_of_boundary_mask(flow_gt.unsqueeze(0)).squeeze(0) # [H, W]
else:
image1, image2, flow_gt, _ = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape, padding_factor=padding_factor)
image1, image2 = padder.pad(image1, image2)
if count_time and val_id >= 5: # 5 warmup
torch.cuda.synchronize()
time_start = time.perf_counter()
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
# useful when using parallel branches
flow_pr = results_dict['flow_preds'][-1]
if count_time and val_id >= 5:
torch.cuda.synchronize()
total_time += time.perf_counter() - time_start
if val_id >= num_runs + 4:
break
flow = padder.unpad(flow_pr[0]).cpu()
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
epe_list.append(epe.view(-1).numpy())
if evaluate_matched_unmatched:
matched_valid_mask = (noc_valid > 0.5) & (in_image_valid > 0.5)
if matched_valid_mask.max() > 0:
matched_epe_list.append(epe[matched_valid_mask].cpu().numpy())
unmatched_epe_list.append(epe[~matched_valid_mask].cpu().numpy())
if with_speed_metric:
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
valid_mask = (flow_gt_speed < 10)
if valid_mask.max() > 0:
s0_10_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40)
if valid_mask.max() > 0:
s10_40_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed > 40)
if valid_mask.max() > 0:
s40plus_list.append(epe[valid_mask].cpu().numpy())
epe_all = np.concatenate(epe_list)
epe = np.mean(epe_all)
px1 = np.mean(epe_all > 1)
px3 = np.mean(epe_all > 3)
px5 = np.mean(epe_all > 5)
dstype_ori = dstype
print("Validation Sintel (%s) EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (dstype_ori, epe, px1, px3, px5))
dstype = 'sintel_' + dstype
results[dstype + '_epe'] = np.mean(epe_list)
results[dstype + '_1px'] = px1
results[dstype + '_3px'] = px3
results[dstype + '_5px'] = px5
if with_speed_metric:
s0_10 = np.mean(np.concatenate(s0_10_list))
s10_40 = np.mean(np.concatenate(s10_40_list))
s40plus = np.mean(np.concatenate(s40plus_list))
print("Validation Sintel (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
dstype_ori, s0_10,
s10_40,
s40plus))
results[dstype + '_s0_10'] = s0_10
results[dstype + '_s10_40'] = s10_40
results[dstype + '_s40+'] = s40plus
if count_time:
print('Time: %.6fs' % (total_time / num_runs))
break # only the clean pass when counting time
if evaluate_matched_unmatched:
matched_epe = np.mean(np.concatenate(matched_epe_list))
unmatched_epe = np.mean(np.concatenate(unmatched_epe_list))
print('Validatation Sintel (%s) matched epe: %.3f, unmatched epe: %.3f' % (
dstype_ori, matched_epe, unmatched_epe))
results[dstype + '_matched'] = matched_epe
results[dstype + '_unmatched'] = unmatched_epe
return results
@torch.no_grad()
def validate_kitti(model,
padding_factor=8,
with_speed_metric=False,
average_over_pixels=True,
attn_splits_list=False,
corr_radius_list=False,
prop_radius_list=False,
):
""" Peform validation using the KITTI-2015 (train) split """
model.eval()
val_dataset = data.KITTI(split='training')
print('Number of validation image pairs: %d' % len(val_dataset))
out_list, epe_list = [], []
results = {}
if with_speed_metric:
if average_over_pixels:
s0_10_list = []
s10_40_list = []
s40plus_list = []
else:
s0_10_epe_sum = 0
s0_10_valid_samples = 0
s10_40_epe_sum = 0
s10_40_valid_samples = 0
s40plus_epe_sum = 0
s40plus_valid_samples = 0
for val_id in range(len(val_dataset)):
image1, image2, flow_gt, valid_gt = val_dataset[val_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor)
image1, image2 = padder.pad(image1, image2)
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
)
# useful when using parallel branches
flow_pr = results_dict['flow_preds'][-1]
flow = padder.unpad(flow_pr[0]).cpu()
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt()
mag = torch.sum(flow_gt ** 2, dim=0).sqrt()
if with_speed_metric:
# flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt()
flow_gt_speed = mag
if average_over_pixels:
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse
if valid_mask.max() > 0:
s0_10_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s10_40_list.append(epe[valid_mask].cpu().numpy())
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s40plus_list.append(epe[valid_mask].cpu().numpy())
else:
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) # note KITTI GT is sparse
if valid_mask.max() > 0:
s0_10_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
s0_10_valid_samples += 1
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s10_40_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
s10_40_valid_samples += 1
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5)
if valid_mask.max() > 0:
s40plus_epe_sum += (epe * valid_mask).sum() / valid_mask.sum()
s40plus_valid_samples += 1
epe = epe.view(-1)
mag = mag.view(-1)
val = valid_gt.view(-1) >= 0.5
out = ((epe > 3.0) & ((epe / mag) > 0.05)).float()
if average_over_pixels:
epe_list.append(epe[val].cpu().numpy())
else:
epe_list.append(epe[val].mean().item())
out_list.append(out[val].cpu().numpy())
if average_over_pixels:
epe_list = np.concatenate(epe_list)
else:
epe_list = np.array(epe_list)
out_list = np.concatenate(out_list)
epe = np.mean(epe_list)
f1 = 100 * np.mean(out_list)
print("Validation KITTI EPE: %.3f, F1-all: %.3f" % (epe, f1))
results['kitti_epe'] = epe
results['kitti_f1'] = f1
if with_speed_metric:
if average_over_pixels:
s0_10 = np.mean(np.concatenate(s0_10_list))
s10_40 = np.mean(np.concatenate(s10_40_list))
s40plus = np.mean(np.concatenate(s40plus_list))
else:
s0_10 = s0_10_epe_sum / s0_10_valid_samples
s10_40 = s10_40_epe_sum / s10_40_valid_samples
s40plus = s40plus_epe_sum / s40plus_valid_samples
print("Validation KITTI s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % (
s0_10,
s10_40,
s40plus))
results['kitti_s0_10'] = s0_10
results['kitti_s10_40'] = s10_40
results['kitti_s40+'] = s40plus
return results
@torch.no_grad()
def inference_on_dir(model,
inference_dir,
output_path='output',
padding_factor=8,
inference_size=None,
paired_data=False, # dir of paired testdata instead of a sequence
save_flo_flow=False, # save as .flo for quantative evaluation
attn_splits_list=None,
corr_radius_list=None,
prop_radius_list=None,
pred_bidir_flow=False,
fwd_bwd_consistency_check=False,
):
""" Inference on a directory """
model.eval()
if fwd_bwd_consistency_check:
assert pred_bidir_flow
if not os.path.exists(output_path):
os.makedirs(output_path)
filenames = sorted(glob(inference_dir + '/*'))
print('%d images found' % len(filenames))
stride = 2 if paired_data else 1
if paired_data:
assert len(filenames) % 2 == 0
for test_id in range(0, len(filenames) - 1, stride):
image1 = frame_utils.read_gen(filenames[test_id])
image2 = frame_utils.read_gen(filenames[test_id + 1])
image1 = np.array(image1).astype(np.uint8)
image2 = np.array(image2).astype(np.uint8)
if len(image1.shape) == 2: # gray image, for example, HD1K
image1 = np.tile(image1[..., None], (1, 1, 3))
image2 = np.tile(image2[..., None], (1, 1, 3))
else:
image1 = image1[..., :3]
image2 = image2[..., :3]
image1 = torch.from_numpy(image1).permute(2, 0, 1).float()
image2 = torch.from_numpy(image2).permute(2, 0, 1).float()
if inference_size is None:
padder = InputPadder(image1.shape, padding_factor=padding_factor)
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
else:
image1, image2 = image1[None].cuda(), image2[None].cuda()
# resize before inference
if inference_size is not None:
assert isinstance(inference_size, list) or isinstance(inference_size, tuple)
ori_size = image1.shape[-2:]
image1 = F.interpolate(image1, size=inference_size, mode='bilinear',
align_corners=True)
image2 = F.interpolate(image2, size=inference_size, mode='bilinear',
align_corners=True)
results_dict = model(image1, image2,
attn_splits_list=attn_splits_list,
corr_radius_list=corr_radius_list,
prop_radius_list=prop_radius_list,
pred_bidir_flow=pred_bidir_flow,
)
flow_pr = results_dict['flow_preds'][-1] # [B, 2, H, W]
# resize back
if inference_size is not None:
flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear',
align_corners=True)
flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1]
flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2]
if inference_size is None:
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() # [H, W, 2]
else:
flow = flow_pr[0].permute(1, 2, 0).cpu().numpy() # [H, W, 2]
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow.png')
# save vis flow
save_vis_flow_tofile(flow, output_file)
# also predict backward flow
if pred_bidir_flow:
assert flow_pr.size(0) == 2 # [2, H, W, 2]
if inference_size is None:
flow_bwd = padder.unpad(flow_pr[1]).permute(1, 2, 0).cpu().numpy() # [H, W, 2]
else:
flow_bwd = flow_pr[1].permute(1, 2, 0).cpu().numpy() # [H, W, 2]
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow_bwd.png')
# save vis flow
save_vis_flow_tofile(flow_bwd, output_file)
# forward-backward consistency check
# occlusion is 1
if fwd_bwd_consistency_check:
if inference_size is None:
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W]
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W]
else:
fwd_flow = flow_pr[0].unsqueeze(0)
bwd_flow = flow_pr[1].unsqueeze(0)
fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) # [1, H, W] float
fwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ.png')
bwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ_bwd.png')
Image.fromarray((fwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(fwd_occ_file)
Image.fromarray((bwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(bwd_occ_file)
if save_flo_flow:
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_pred.flo')
frame_utils.writeFlow(output_file, flow)
|