File size: 9,955 Bytes
1239b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) OpenMMLab. All rights reserved.
import logging

import torch.nn as nn
import torch.utils.checkpoint as cp

from .utils import constant_init, kaiming_init


def conv3x3(in_planes, out_planes, stride=1, dilation=1):
    """3x3 convolution with padding."""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        dilation=dilation,
        bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False):
        super(BasicBlock, self).__init__()
        assert style in ['pytorch', 'caffe']
        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        assert not with_cp

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False):
        """Bottleneck block.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__()
        assert style in ['pytorch', 'caffe']
        if style == 'pytorch':
            conv1_stride = 1
            conv2_stride = stride
        else:
            conv1_stride = stride
            conv2_stride = 1
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False)
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
            residual = x

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)

            if self.downsample is not None:
                residual = self.downsample(x)

            out += residual

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
                   style='pytorch',
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for _ in range(1, blocks):
        layers.append(
            block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))

    return nn.Sequential(*layers)


class ResNet(nn.Module):
    """ResNet backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """

    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 num_stages=4,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
                 style='pytorch',
                 frozen_stages=-1,
                 bn_eval=True,
                 bn_frozen=False,
                 with_cp=False):
        super(ResNet, self).__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        assert num_stages >= 1 and num_stages <= 4
        block, stage_blocks = self.arch_settings[depth]
        stage_blocks = stage_blocks[:num_stages]
        assert len(strides) == len(dilations) == num_stages
        assert max(out_indices) < num_stages

        self.out_indices = out_indices
        self.style = style
        self.frozen_stages = frozen_stages
        self.bn_eval = bn_eval
        self.bn_frozen = bn_frozen
        self.with_cp = with_cp

        self.inplanes = 64
        self.conv1 = nn.Conv2d(
            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.res_layers = []
        for i, num_blocks in enumerate(stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            planes = 64 * 2**i
            res_layer = make_res_layer(
                block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                with_cp=with_cp)
            self.inplanes = planes * block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            from ..runner import load_checkpoint
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(ResNet, self).train(mode)
        if self.bn_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                    if self.bn_frozen:
                        for params in m.parameters():
                            params.requires_grad = False
        if mode and self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
            for param in self.bn1.parameters():
                param.requires_grad = False
            self.bn1.eval()
            self.bn1.weight.requires_grad = False
            self.bn1.bias.requires_grad = False
            for i in range(1, self.frozen_stages + 1):
                mod = getattr(self, f'layer{i}')
                mod.eval()
                for param in mod.parameters():
                    param.requires_grad = False