File size: 25,196 Bytes
1239b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# Copyright (c) OpenMMLab. All rights reserved.
import numbers
import cv2
import numpy as np
from ..utils import to_2tuple
from .io import imread_backend
try:
from PIL import Image
except ImportError:
Image = None
def _scale_size(size, scale):
"""Rescale a size by a ratio.
Args:
size (tuple[int]): (w, h).
scale (float | tuple(float)): Scaling factor.
Returns:
tuple[int]: scaled size.
"""
if isinstance(scale, (float, int)):
scale = (scale, scale)
w, h = size
return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5)
cv2_interp_codes = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'bicubic': cv2.INTER_CUBIC,
'area': cv2.INTER_AREA,
'lanczos': cv2.INTER_LANCZOS4
}
if Image is not None:
pillow_interp_codes = {
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'box': Image.BOX,
'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING
}
def imresize(img,
size,
return_scale=False,
interpolation='bilinear',
out=None,
backend=None):
"""Resize image to a given size.
Args:
img (ndarray): The input image.
size (tuple[int]): Target size (w, h).
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend.
out (ndarray): The output destination.
backend (str | None): The image resize backend type. Options are `cv2`,
`pillow`, `None`. If backend is None, the global imread_backend
specified by ``mmcv.use_backend()`` will be used. Default: None.
Returns:
tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`.
"""
h, w = img.shape[:2]
if backend is None:
backend = imread_backend
if backend not in ['cv2', 'pillow']:
raise ValueError(f'backend: {backend} is not supported for resize.'
f"Supported backends are 'cv2', 'pillow'")
if backend == 'pillow':
assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
pil_image = Image.fromarray(img)
pil_image = pil_image.resize(size, pillow_interp_codes[interpolation])
resized_img = np.array(pil_image)
else:
resized_img = cv2.resize(
img, size, dst=out, interpolation=cv2_interp_codes[interpolation])
if not return_scale:
return resized_img
else:
w_scale = size[0] / w
h_scale = size[1] / h
return resized_img, w_scale, h_scale
def imresize_to_multiple(img,
divisor,
size=None,
scale_factor=None,
keep_ratio=False,
return_scale=False,
interpolation='bilinear',
out=None,
backend=None):
"""Resize image according to a given size or scale factor and then rounds
up the the resized or rescaled image size to the nearest value that can be
divided by the divisor.
Args:
img (ndarray): The input image.
divisor (int | tuple): Resized image size will be a multiple of
divisor. If divisor is a tuple, divisor should be
(w_divisor, h_divisor).
size (None | int | tuple[int]): Target size (w, h). Default: None.
scale_factor (None | float | tuple[float]): Multiplier for spatial
size. Should match input size if it is a tuple and the 2D style is
(w_scale_factor, h_scale_factor). Default: None.
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Default: False.
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend.
out (ndarray): The output destination.
backend (str | None): The image resize backend type. Options are `cv2`,
`pillow`, `None`. If backend is None, the global imread_backend
specified by ``mmcv.use_backend()`` will be used. Default: None.
Returns:
tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`.
"""
h, w = img.shape[:2]
if size is not None and scale_factor is not None:
raise ValueError('only one of size or scale_factor should be defined')
elif size is None and scale_factor is None:
raise ValueError('one of size or scale_factor should be defined')
elif size is not None:
size = to_2tuple(size)
if keep_ratio:
size = rescale_size((w, h), size, return_scale=False)
else:
size = _scale_size((w, h), scale_factor)
divisor = to_2tuple(divisor)
size = tuple([int(np.ceil(s / d)) * d for s, d in zip(size, divisor)])
resized_img, w_scale, h_scale = imresize(
img,
size,
return_scale=True,
interpolation=interpolation,
out=out,
backend=backend)
if return_scale:
return resized_img, w_scale, h_scale
else:
return resized_img
def imresize_like(img,
dst_img,
return_scale=False,
interpolation='bilinear',
backend=None):
"""Resize image to the same size of a given image.
Args:
img (ndarray): The input image.
dst_img (ndarray): The target image.
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Same as :func:`resize`.
backend (str | None): Same as :func:`resize`.
Returns:
tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`.
"""
h, w = dst_img.shape[:2]
return imresize(img, (w, h), return_scale, interpolation, backend=backend)
def rescale_size(old_size, scale, return_scale=False):
"""Calculate the new size to be rescaled to.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image size.
Returns:
tuple[int]: The new rescaled image size.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w),
max_short_edge / min(h, w))
else:
raise TypeError(
f'Scale must be a number or tuple of int, but got {type(scale)}')
new_size = _scale_size((w, h), scale_factor)
if return_scale:
return new_size, scale_factor
else:
return new_size
def imrescale(img,
scale,
return_scale=False,
interpolation='bilinear',
backend=None):
"""Resize image while keeping the aspect ratio.
Args:
img (ndarray): The input image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image.
interpolation (str): Same as :func:`resize`.
backend (str | None): Same as :func:`resize`.
Returns:
ndarray: The rescaled image.
"""
h, w = img.shape[:2]
new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
rescaled_img = imresize(
img, new_size, interpolation=interpolation, backend=backend)
if return_scale:
return rescaled_img, scale_factor
else:
return rescaled_img
def imflip(img, direction='horizontal'):
"""Flip an image horizontally or vertically.
Args:
img (ndarray): Image to be flipped.
direction (str): The flip direction, either "horizontal" or
"vertical" or "diagonal".
Returns:
ndarray: The flipped image.
"""
assert direction in ['horizontal', 'vertical', 'diagonal']
if direction == 'horizontal':
return np.flip(img, axis=1)
elif direction == 'vertical':
return np.flip(img, axis=0)
else:
return np.flip(img, axis=(0, 1))
def imflip_(img, direction='horizontal'):
"""Inplace flip an image horizontally or vertically.
Args:
img (ndarray): Image to be flipped.
direction (str): The flip direction, either "horizontal" or
"vertical" or "diagonal".
Returns:
ndarray: The flipped image (inplace).
"""
assert direction in ['horizontal', 'vertical', 'diagonal']
if direction == 'horizontal':
return cv2.flip(img, 1, img)
elif direction == 'vertical':
return cv2.flip(img, 0, img)
else:
return cv2.flip(img, -1, img)
def imrotate(img,
angle,
center=None,
scale=1.0,
border_value=0,
interpolation='bilinear',
auto_bound=False):
"""Rotate an image.
Args:
img (ndarray): Image to be rotated.
angle (float): Rotation angle in degrees, positive values mean
clockwise rotation.
center (tuple[float], optional): Center point (w, h) of the rotation in
the source image. If not specified, the center of the image will be
used.
scale (float): Isotropic scale factor.
border_value (int): Border value.
interpolation (str): Same as :func:`resize`.
auto_bound (bool): Whether to adjust the image size to cover the whole
rotated image.
Returns:
ndarray: The rotated image.
"""
if center is not None and auto_bound:
raise ValueError('`auto_bound` conflicts with `center`')
h, w = img.shape[:2]
if center is None:
center = ((w - 1) * 0.5, (h - 1) * 0.5)
assert isinstance(center, tuple)
matrix = cv2.getRotationMatrix2D(center, -angle, scale)
if auto_bound:
cos = np.abs(matrix[0, 0])
sin = np.abs(matrix[0, 1])
new_w = h * sin + w * cos
new_h = h * cos + w * sin
matrix[0, 2] += (new_w - w) * 0.5
matrix[1, 2] += (new_h - h) * 0.5
w = int(np.round(new_w))
h = int(np.round(new_h))
rotated = cv2.warpAffine(
img,
matrix, (w, h),
flags=cv2_interp_codes[interpolation],
borderValue=border_value)
return rotated
def bbox_clip(bboxes, img_shape):
"""Clip bboxes to fit the image shape.
Args:
bboxes (ndarray): Shape (..., 4*k)
img_shape (tuple[int]): (height, width) of the image.
Returns:
ndarray: Clipped bboxes.
"""
assert bboxes.shape[-1] % 4 == 0
cmin = np.empty(bboxes.shape[-1], dtype=bboxes.dtype)
cmin[0::2] = img_shape[1] - 1
cmin[1::2] = img_shape[0] - 1
clipped_bboxes = np.maximum(np.minimum(bboxes, cmin), 0)
return clipped_bboxes
def bbox_scaling(bboxes, scale, clip_shape=None):
"""Scaling bboxes w.r.t the box center.
Args:
bboxes (ndarray): Shape(..., 4).
scale (float): Scaling factor.
clip_shape (tuple[int], optional): If specified, bboxes that exceed the
boundary will be clipped according to the given shape (h, w).
Returns:
ndarray: Scaled bboxes.
"""
if float(scale) == 1.0:
scaled_bboxes = bboxes.copy()
else:
w = bboxes[..., 2] - bboxes[..., 0] + 1
h = bboxes[..., 3] - bboxes[..., 1] + 1
dw = (w * (scale - 1)) * 0.5
dh = (h * (scale - 1)) * 0.5
scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1)
if clip_shape is not None:
return bbox_clip(scaled_bboxes, clip_shape)
else:
return scaled_bboxes
def imcrop(img, bboxes, scale=1.0, pad_fill=None):
"""Crop image patches.
3 steps: scale the bboxes -> clip bboxes -> crop and pad.
Args:
img (ndarray): Image to be cropped.
bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes.
scale (float, optional): Scale ratio of bboxes, the default value
1.0 means no padding.
pad_fill (Number | list[Number]): Value to be filled for padding.
Default: None, which means no padding.
Returns:
list[ndarray] | ndarray: The cropped image patches.
"""
chn = 1 if img.ndim == 2 else img.shape[2]
if pad_fill is not None:
if isinstance(pad_fill, (int, float)):
pad_fill = [pad_fill for _ in range(chn)]
assert len(pad_fill) == chn
_bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes
scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32)
clipped_bbox = bbox_clip(scaled_bboxes, img.shape)
patches = []
for i in range(clipped_bbox.shape[0]):
x1, y1, x2, y2 = tuple(clipped_bbox[i, :])
if pad_fill is None:
patch = img[y1:y2 + 1, x1:x2 + 1, ...]
else:
_x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :])
if chn == 1:
patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1)
else:
patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn)
patch = np.array(
pad_fill, dtype=img.dtype) * np.ones(
patch_shape, dtype=img.dtype)
x_start = 0 if _x1 >= 0 else -_x1
y_start = 0 if _y1 >= 0 else -_y1
w = x2 - x1 + 1
h = y2 - y1 + 1
patch[y_start:y_start + h, x_start:x_start + w,
...] = img[y1:y1 + h, x1:x1 + w, ...]
patches.append(patch)
if bboxes.ndim == 1:
return patches[0]
else:
return patches
def impad(img,
*,
shape=None,
padding=None,
pad_val=0,
padding_mode='constant'):
"""Pad the given image to a certain shape or pad on all sides with
specified padding mode and padding value.
Args:
img (ndarray): Image to be padded.
shape (tuple[int]): Expected padding shape (h, w). Default: None.
padding (int or tuple[int]): Padding on each border. If a single int is
provided this is used to pad all borders. If tuple of length 2 is
provided this is the padding on left/right and top/bottom
respectively. If a tuple of length 4 is provided this is the
padding for the left, top, right and bottom borders respectively.
Default: None. Note that `shape` and `padding` can not be both
set.
pad_val (Number | Sequence[Number]): Values to be filled in padding
areas when padding_mode is 'constant'. Default: 0.
padding_mode (str): Type of padding. Should be: constant, edge,
reflect or symmetric. Default: constant.
- constant: pads with a constant value, this value is specified
with pad_val.
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the
last value on the edge. For example, padding [1, 2, 3, 4]
with 2 elements on both sides in reflect mode will result
in [3, 2, 1, 2, 3, 4, 3, 2].
- symmetric: pads with reflection of image repeating the last
value on the edge. For example, padding [1, 2, 3, 4] with
2 elements on both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3]
Returns:
ndarray: The padded image.
"""
assert (shape is not None) ^ (padding is not None)
if shape is not None:
padding = (0, 0, shape[1] - img.shape[1], shape[0] - img.shape[0])
# check pad_val
if isinstance(pad_val, tuple):
assert len(pad_val) == img.shape[-1]
elif not isinstance(pad_val, numbers.Number):
raise TypeError('pad_val must be a int or a tuple. '
f'But received {type(pad_val)}')
# check padding
if isinstance(padding, tuple) and len(padding) in [2, 4]:
if len(padding) == 2:
padding = (padding[0], padding[1], padding[0], padding[1])
elif isinstance(padding, numbers.Number):
padding = (padding, padding, padding, padding)
else:
raise ValueError('Padding must be a int or a 2, or 4 element tuple.'
f'But received {padding}')
# check padding mode
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
border_type = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_REFLECT_101,
'symmetric': cv2.BORDER_REFLECT
}
img = cv2.copyMakeBorder(
img,
padding[1],
padding[3],
padding[0],
padding[2],
border_type[padding_mode],
value=pad_val)
return img
def impad_to_multiple(img, divisor, pad_val=0):
"""Pad an image to ensure each edge to be multiple to some number.
Args:
img (ndarray): Image to be padded.
divisor (int): Padded image edges will be multiple to divisor.
pad_val (Number | Sequence[Number]): Same as :func:`impad`.
Returns:
ndarray: The padded image.
"""
pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
return impad(img, shape=(pad_h, pad_w), pad_val=pad_val)
def cutout(img, shape, pad_val=0):
"""Randomly cut out a rectangle from the original img.
Args:
img (ndarray): Image to be cutout.
shape (int | tuple[int]): Expected cutout shape (h, w). If given as a
int, the value will be used for both h and w.
pad_val (int | float | tuple[int | float]): Values to be filled in the
cut area. Defaults to 0.
Returns:
ndarray: The cutout image.
"""
channels = 1 if img.ndim == 2 else img.shape[2]
if isinstance(shape, int):
cut_h, cut_w = shape, shape
else:
assert isinstance(shape, tuple) and len(shape) == 2, \
f'shape must be a int or a tuple with length 2, but got type ' \
f'{type(shape)} instead.'
cut_h, cut_w = shape
if isinstance(pad_val, (int, float)):
pad_val = tuple([pad_val] * channels)
elif isinstance(pad_val, tuple):
assert len(pad_val) == channels, \
'Expected the num of elements in tuple equals the channels' \
'of input image. Found {} vs {}'.format(
len(pad_val), channels)
else:
raise TypeError(f'Invalid type {type(pad_val)} for `pad_val`')
img_h, img_w = img.shape[:2]
y0 = np.random.uniform(img_h)
x0 = np.random.uniform(img_w)
y1 = int(max(0, y0 - cut_h / 2.))
x1 = int(max(0, x0 - cut_w / 2.))
y2 = min(img_h, y1 + cut_h)
x2 = min(img_w, x1 + cut_w)
if img.ndim == 2:
patch_shape = (y2 - y1, x2 - x1)
else:
patch_shape = (y2 - y1, x2 - x1, channels)
img_cutout = img.copy()
patch = np.array(
pad_val, dtype=img.dtype) * np.ones(
patch_shape, dtype=img.dtype)
img_cutout[y1:y2, x1:x2, ...] = patch
return img_cutout
def _get_shear_matrix(magnitude, direction='horizontal'):
"""Generate the shear matrix for transformation.
Args:
magnitude (int | float): The magnitude used for shear.
direction (str): The flip direction, either "horizontal"
or "vertical".
Returns:
ndarray: The shear matrix with dtype float32.
"""
if direction == 'horizontal':
shear_matrix = np.float32([[1, magnitude, 0], [0, 1, 0]])
elif direction == 'vertical':
shear_matrix = np.float32([[1, 0, 0], [magnitude, 1, 0]])
return shear_matrix
def imshear(img,
magnitude,
direction='horizontal',
border_value=0,
interpolation='bilinear'):
"""Shear an image.
Args:
img (ndarray): Image to be sheared with format (h, w)
or (h, w, c).
magnitude (int | float): The magnitude used for shear.
direction (str): The flip direction, either "horizontal"
or "vertical".
border_value (int | tuple[int]): Value used in case of a
constant border.
interpolation (str): Same as :func:`resize`.
Returns:
ndarray: The sheared image.
"""
assert direction in ['horizontal',
'vertical'], f'Invalid direction: {direction}'
height, width = img.shape[:2]
if img.ndim == 2:
channels = 1
elif img.ndim == 3:
channels = img.shape[-1]
if isinstance(border_value, int):
border_value = tuple([border_value] * channels)
elif isinstance(border_value, tuple):
assert len(border_value) == channels, \
'Expected the num of elements in tuple equals the channels' \
'of input image. Found {} vs {}'.format(
len(border_value), channels)
else:
raise ValueError(
f'Invalid type {type(border_value)} for `border_value`')
shear_matrix = _get_shear_matrix(magnitude, direction)
sheared = cv2.warpAffine(
img,
shear_matrix,
(width, height),
# Note case when the number elements in `border_value`
# greater than 3 (e.g. shearing masks whose channels large
# than 3) will raise TypeError in `cv2.warpAffine`.
# Here simply slice the first 3 values in `border_value`.
borderValue=border_value[:3],
flags=cv2_interp_codes[interpolation])
return sheared
def _get_translate_matrix(offset, direction='horizontal'):
"""Generate the translate matrix.
Args:
offset (int | float): The offset used for translate.
direction (str): The translate direction, either
"horizontal" or "vertical".
Returns:
ndarray: The translate matrix with dtype float32.
"""
if direction == 'horizontal':
translate_matrix = np.float32([[1, 0, offset], [0, 1, 0]])
elif direction == 'vertical':
translate_matrix = np.float32([[1, 0, 0], [0, 1, offset]])
return translate_matrix
def imtranslate(img,
offset,
direction='horizontal',
border_value=0,
interpolation='bilinear'):
"""Translate an image.
Args:
img (ndarray): Image to be translated with format
(h, w) or (h, w, c).
offset (int | float): The offset used for translate.
direction (str): The translate direction, either "horizontal"
or "vertical".
border_value (int | tuple[int]): Value used in case of a
constant border.
interpolation (str): Same as :func:`resize`.
Returns:
ndarray: The translated image.
"""
assert direction in ['horizontal',
'vertical'], f'Invalid direction: {direction}'
height, width = img.shape[:2]
if img.ndim == 2:
channels = 1
elif img.ndim == 3:
channels = img.shape[-1]
if isinstance(border_value, int):
border_value = tuple([border_value] * channels)
elif isinstance(border_value, tuple):
assert len(border_value) == channels, \
'Expected the num of elements in tuple equals the channels' \
'of input image. Found {} vs {}'.format(
len(border_value), channels)
else:
raise ValueError(
f'Invalid type {type(border_value)} for `border_value`.')
translate_matrix = _get_translate_matrix(offset, direction)
translated = cv2.warpAffine(
img,
translate_matrix,
(width, height),
# Note case when the number elements in `border_value`
# greater than 3 (e.g. translating masks whose channels
# large than 3) will raise TypeError in `cv2.warpAffine`.
# Here simply slice the first 3 values in `border_value`.
borderValue=border_value[:3],
flags=cv2_interp_codes[interpolation])
return translated
|