File size: 15,915 Bytes
1239b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils import split_feature, merge_splits
def single_head_full_attention(q, k, v):
# q, k, v: [B, L, C]
assert q.dim() == k.dim() == v.dim() == 3
scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5) # [B, L, L]
attn = torch.softmax(scores, dim=2) # [B, L, L]
out = torch.matmul(attn, v) # [B, L, C]
return out
def generate_shift_window_attn_mask(input_resolution, window_size_h, window_size_w,
shift_size_h, shift_size_w, device=torch.device('cuda')):
# Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
# calculate attention mask for SW-MSA
h, w = input_resolution
img_mask = torch.zeros((1, h, w, 1)).to(device) # 1 H W 1
h_slices = (slice(0, -window_size_h),
slice(-window_size_h, -shift_size_h),
slice(-shift_size_h, None))
w_slices = (slice(0, -window_size_w),
slice(-window_size_w, -shift_size_w),
slice(-shift_size_w, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = split_feature(img_mask, num_splits=input_resolution[-1] // window_size_w, channel_last=True)
mask_windows = mask_windows.view(-1, window_size_h * window_size_w)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
def single_head_split_window_attention(q, k, v,
num_splits=1,
with_shift=False,
h=None,
w=None,
attn_mask=None,
):
# Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
# q, k, v: [B, L, C]
assert q.dim() == k.dim() == v.dim() == 3
assert h is not None and w is not None
assert q.size(1) == h * w
b, _, c = q.size()
b_new = b * num_splits * num_splits
window_size_h = h // num_splits
window_size_w = w // num_splits
q = q.view(b, h, w, c) # [B, H, W, C]
k = k.view(b, h, w, c)
v = v.view(b, h, w, c)
scale_factor = c ** 0.5
if with_shift:
assert attn_mask is not None # compute once
shift_size_h = window_size_h // 2
shift_size_w = window_size_w // 2
q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
q = split_feature(q, num_splits=num_splits, channel_last=True) # [B*K*K, H/K, W/K, C]
k = split_feature(k, num_splits=num_splits, channel_last=True)
v = split_feature(v, num_splits=num_splits, channel_last=True)
scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
) / scale_factor # [B*K*K, H/K*W/K, H/K*W/K]
if with_shift:
scores += attn_mask.repeat(b, 1, 1)
attn = torch.softmax(scores, dim=-1)
out = torch.matmul(attn, v.view(b_new, -1, c)) # [B*K*K, H/K*W/K, C]
out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c),
num_splits=num_splits, channel_last=True) # [B, H, W, C]
# shift back
if with_shift:
out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2))
out = out.view(b, -1, c)
return out
class TransformerLayer(nn.Module):
def __init__(self,
d_model=256,
nhead=1,
attention_type='swin',
no_ffn=False,
ffn_dim_expansion=4,
with_shift=False,
**kwargs,
):
super(TransformerLayer, self).__init__()
self.dim = d_model
self.nhead = nhead
self.attention_type = attention_type
self.no_ffn = no_ffn
self.with_shift = with_shift
# multi-head attention
self.q_proj = nn.Linear(d_model, d_model, bias=False)
self.k_proj = nn.Linear(d_model, d_model, bias=False)
self.v_proj = nn.Linear(d_model, d_model, bias=False)
self.merge = nn.Linear(d_model, d_model, bias=False)
self.norm1 = nn.LayerNorm(d_model)
# no ffn after self-attn, with ffn after cross-attn
if not self.no_ffn:
in_channels = d_model * 2
self.mlp = nn.Sequential(
nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False),
nn.GELU(),
nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False),
)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, source, target,
height=None,
width=None,
shifted_window_attn_mask=None,
attn_num_splits=None,
**kwargs,
):
# source, target: [B, L, C]
query, key, value = source, target, target
# single-head attention
query = self.q_proj(query) # [B, L, C]
key = self.k_proj(key) # [B, L, C]
value = self.v_proj(value) # [B, L, C]
if self.attention_type == 'swin' and attn_num_splits > 1:
if self.nhead > 1:
# we observe that multihead attention slows down the speed and increases the memory consumption
# without bringing obvious performance gains and thus the implementation is removed
raise NotImplementedError
else:
message = single_head_split_window_attention(query, key, value,
num_splits=attn_num_splits,
with_shift=self.with_shift,
h=height,
w=width,
attn_mask=shifted_window_attn_mask,
)
else:
message = single_head_full_attention(query, key, value) # [B, L, C]
message = self.merge(message) # [B, L, C]
message = self.norm1(message)
if not self.no_ffn:
message = self.mlp(torch.cat([source, message], dim=-1))
message = self.norm2(message)
return source + message
class TransformerBlock(nn.Module):
"""self attention + cross attention + FFN"""
def __init__(self,
d_model=256,
nhead=1,
attention_type='swin',
ffn_dim_expansion=4,
with_shift=False,
**kwargs,
):
super(TransformerBlock, self).__init__()
self.self_attn = TransformerLayer(d_model=d_model,
nhead=nhead,
attention_type=attention_type,
no_ffn=True,
ffn_dim_expansion=ffn_dim_expansion,
with_shift=with_shift,
)
self.cross_attn_ffn = TransformerLayer(d_model=d_model,
nhead=nhead,
attention_type=attention_type,
ffn_dim_expansion=ffn_dim_expansion,
with_shift=with_shift,
)
def forward(self, source, target,
height=None,
width=None,
shifted_window_attn_mask=None,
attn_num_splits=None,
**kwargs,
):
# source, target: [B, L, C]
# self attention
source = self.self_attn(source, source,
height=height,
width=width,
shifted_window_attn_mask=shifted_window_attn_mask,
attn_num_splits=attn_num_splits,
)
# cross attention and ffn
source = self.cross_attn_ffn(source, target,
height=height,
width=width,
shifted_window_attn_mask=shifted_window_attn_mask,
attn_num_splits=attn_num_splits,
)
return source
class FeatureTransformer(nn.Module):
def __init__(self,
num_layers=6,
d_model=128,
nhead=1,
attention_type='swin',
ffn_dim_expansion=4,
**kwargs,
):
super(FeatureTransformer, self).__init__()
self.attention_type = attention_type
self.d_model = d_model
self.nhead = nhead
self.layers = nn.ModuleList([
TransformerBlock(d_model=d_model,
nhead=nhead,
attention_type=attention_type,
ffn_dim_expansion=ffn_dim_expansion,
with_shift=True if attention_type == 'swin' and i % 2 == 1 else False,
)
for i in range(num_layers)])
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, feature0, feature1,
attn_num_splits=None,
**kwargs,
):
b, c, h, w = feature0.shape
assert self.d_model == c
feature0 = feature0.flatten(-2).permute(0, 2, 1) # [B, H*W, C]
feature1 = feature1.flatten(-2).permute(0, 2, 1) # [B, H*W, C]
if self.attention_type == 'swin' and attn_num_splits > 1:
# global and refine use different number of splits
window_size_h = h // attn_num_splits
window_size_w = w // attn_num_splits
# compute attn mask once
shifted_window_attn_mask = generate_shift_window_attn_mask(
input_resolution=(h, w),
window_size_h=window_size_h,
window_size_w=window_size_w,
shift_size_h=window_size_h // 2,
shift_size_w=window_size_w // 2,
device=feature0.device,
) # [K*K, H/K*W/K, H/K*W/K]
else:
shifted_window_attn_mask = None
# concat feature0 and feature1 in batch dimension to compute in parallel
concat0 = torch.cat((feature0, feature1), dim=0) # [2B, H*W, C]
concat1 = torch.cat((feature1, feature0), dim=0) # [2B, H*W, C]
for layer in self.layers:
concat0 = layer(concat0, concat1,
height=h,
width=w,
shifted_window_attn_mask=shifted_window_attn_mask,
attn_num_splits=attn_num_splits,
)
# update feature1
concat1 = torch.cat(concat0.chunk(chunks=2, dim=0)[::-1], dim=0)
feature0, feature1 = concat0.chunk(chunks=2, dim=0) # [B, H*W, C]
# reshape back
feature0 = feature0.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W]
feature1 = feature1.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W]
return feature0, feature1
class FeatureFlowAttention(nn.Module):
"""
flow propagation with self-attention on feature
query: feature0, key: feature0, value: flow
"""
def __init__(self, in_channels,
**kwargs,
):
super(FeatureFlowAttention, self).__init__()
self.q_proj = nn.Linear(in_channels, in_channels)
self.k_proj = nn.Linear(in_channels, in_channels)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, feature0, flow,
local_window_attn=False,
local_window_radius=1,
**kwargs,
):
# q, k: feature [B, C, H, W], v: flow [B, 2, H, W]
if local_window_attn:
return self.forward_local_window_attn(feature0, flow,
local_window_radius=local_window_radius)
b, c, h, w = feature0.size()
query = feature0.view(b, c, h * w).permute(0, 2, 1) # [B, H*W, C]
# a note: the ``correct'' implementation should be:
# ``query = self.q_proj(query), key = self.k_proj(query)''
# this problem is observed while cleaning up the code
# however, this doesn't affect the performance since the projection is a linear operation,
# thus the two projection matrices for key can be merged
# so I just leave it as is in order to not re-train all models :)
query = self.q_proj(query) # [B, H*W, C]
key = self.k_proj(query) # [B, H*W, C]
value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1) # [B, H*W, 2]
scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5) # [B, H*W, H*W]
prob = torch.softmax(scores, dim=-1)
out = torch.matmul(prob, value) # [B, H*W, 2]
out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2) # [B, 2, H, W]
return out
def forward_local_window_attn(self, feature0, flow,
local_window_radius=1,
):
assert flow.size(1) == 2
assert local_window_radius > 0
b, c, h, w = feature0.size()
feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1)
).reshape(b * h * w, 1, c) # [B*H*W, 1, C]
kernel_size = 2 * local_window_radius + 1
feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w)
feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size,
padding=local_window_radius) # [B, C*(2R+1)^2), H*W]
feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute(
0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2) # [B*H*W, C, (2R+1)^2]
flow_window = F.unfold(flow, kernel_size=kernel_size,
padding=local_window_radius) # [B, 2*(2R+1)^2), H*W]
flow_window = flow_window.view(b, 2, kernel_size ** 2, h, w).permute(
0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, 2) # [B*H*W, (2R+1)^2, 2]
scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5) # [B*H*W, 1, (2R+1)^2]
prob = torch.softmax(scores, dim=-1)
out = torch.matmul(prob, flow_window).view(b, h, w, 2).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W]
return out
|