|
import torch.nn as nn
|
|
|
|
from .trident_conv import MultiScaleTridentConv
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, in_planes, planes, norm_layer=nn.InstanceNorm2d, stride=1, dilation=1,
|
|
):
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
|
|
dilation=dilation, padding=dilation, stride=stride, bias=False)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
|
dilation=dilation, padding=dilation, bias=False)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
self.norm1 = norm_layer(planes)
|
|
self.norm2 = norm_layer(planes)
|
|
if not stride == 1 or in_planes != planes:
|
|
self.norm3 = norm_layer(planes)
|
|
|
|
if stride == 1 and in_planes == planes:
|
|
self.downsample = None
|
|
else:
|
|
self.downsample = nn.Sequential(
|
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
|
|
|
def forward(self, x):
|
|
y = x
|
|
y = self.relu(self.norm1(self.conv1(y)))
|
|
y = self.relu(self.norm2(self.conv2(y)))
|
|
|
|
if self.downsample is not None:
|
|
x = self.downsample(x)
|
|
|
|
return self.relu(x + y)
|
|
|
|
|
|
class CNNEncoder(nn.Module):
|
|
def __init__(self, output_dim=128,
|
|
norm_layer=nn.InstanceNorm2d,
|
|
num_output_scales=1,
|
|
**kwargs,
|
|
):
|
|
super(CNNEncoder, self).__init__()
|
|
self.num_branch = num_output_scales
|
|
|
|
feature_dims = [64, 96, 128]
|
|
|
|
self.conv1 = nn.Conv2d(3, feature_dims[0], kernel_size=7, stride=2, padding=3, bias=False)
|
|
self.norm1 = norm_layer(feature_dims[0])
|
|
self.relu1 = nn.ReLU(inplace=True)
|
|
|
|
self.in_planes = feature_dims[0]
|
|
self.layer1 = self._make_layer(feature_dims[0], stride=1, norm_layer=norm_layer)
|
|
self.layer2 = self._make_layer(feature_dims[1], stride=2, norm_layer=norm_layer)
|
|
|
|
|
|
stride = 2 if num_output_scales == 1 else 1
|
|
self.layer3 = self._make_layer(feature_dims[2], stride=stride,
|
|
norm_layer=norm_layer,
|
|
)
|
|
|
|
self.conv2 = nn.Conv2d(feature_dims[2], output_dim, 1, 1, 0)
|
|
|
|
if self.num_branch > 1:
|
|
if self.num_branch == 4:
|
|
strides = (1, 2, 4, 8)
|
|
elif self.num_branch == 3:
|
|
strides = (1, 2, 4)
|
|
elif self.num_branch == 2:
|
|
strides = (1, 2)
|
|
else:
|
|
raise ValueError
|
|
|
|
self.trident_conv = MultiScaleTridentConv(output_dim, output_dim,
|
|
kernel_size=3,
|
|
strides=strides,
|
|
paddings=1,
|
|
num_branch=self.num_branch,
|
|
)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
|
if m.weight is not None:
|
|
nn.init.constant_(m.weight, 1)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layer(self, dim, stride=1, dilation=1, norm_layer=nn.InstanceNorm2d):
|
|
layer1 = ResidualBlock(self.in_planes, dim, norm_layer=norm_layer, stride=stride, dilation=dilation)
|
|
layer2 = ResidualBlock(dim, dim, norm_layer=norm_layer, stride=1, dilation=dilation)
|
|
|
|
layers = (layer1, layer2)
|
|
|
|
self.in_planes = dim
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.norm1(x)
|
|
x = self.relu1(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
|
|
x = self.conv2(x)
|
|
|
|
if self.num_branch > 1:
|
|
out = self.trident_conv([x] * self.num_branch)
|
|
else:
|
|
out = [x]
|
|
|
|
return out
|
|
|