import torch | |
def flow_loss_func(flow_preds, flow_gt, valid, | |
gamma=0.9, | |
max_flow=400, | |
**kwargs, | |
): | |
n_predictions = len(flow_preds) | |
flow_loss = 0.0 | |
# exlude invalid pixels and extremely large diplacements | |
mag = torch.sum(flow_gt ** 2, dim=1).sqrt() # [B, H, W] | |
valid = (valid >= 0.5) & (mag < max_flow) | |
for i in range(n_predictions): | |
i_weight = gamma ** (n_predictions - i - 1) | |
i_loss = (flow_preds[i] - flow_gt).abs() | |
flow_loss += i_weight * (valid[:, None] * i_loss).mean() | |
epe = torch.sum((flow_preds[-1] - flow_gt) ** 2, dim=1).sqrt() | |
if valid.max() < 0.5: | |
pass | |
epe = epe.view(-1)[valid.view(-1)] | |
metrics = { | |
'epe': epe.mean().item(), | |
'1px': (epe > 1).float().mean().item(), | |
'3px': (epe > 3).float().mean().item(), | |
'5px': (epe > 5).float().mean().item(), | |
} | |
return flow_loss, metrics | |