|
"""SAMPLING ONLY.""" |
|
|
|
|
|
import os |
|
|
|
import einops |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from ControlNet.ldm.modules.diffusionmodules.util import ( |
|
extract_into_tensor, make_ddim_sampling_parameters, make_ddim_timesteps, |
|
noise_like) |
|
|
|
_ATTN_PRECISION = os.environ.get('ATTN_PRECISION', 'fp32') |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
def register_attention_control(model, controller=None): |
|
|
|
def ca_forward(self, place_in_unet): |
|
|
|
def forward(x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
is_cross = context is not None |
|
context = context if is_cross else x |
|
context = controller(context, is_cross, place_in_unet) |
|
|
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
q, k, v = map( |
|
lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), |
|
(q, k, v)) |
|
|
|
|
|
if _ATTN_PRECISION == 'fp32': |
|
with torch.autocast(enabled=False, device_type=device): |
|
q, k = q.float(), k.float() |
|
sim = torch.einsum('b i d, b j d -> b i j', q, |
|
k) * self.scale |
|
else: |
|
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
|
|
del q, k |
|
|
|
if mask is not None: |
|
mask = einops.rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = einops.repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
|
|
sim = sim.softmax(dim=-1) |
|
|
|
out = torch.einsum('b i j, b j d -> b i d', sim, v) |
|
out = einops.rearrange(out, '(b h) n d -> b n (h d)', h=h) |
|
return self.to_out(out) |
|
|
|
return forward |
|
|
|
class DummyController: |
|
|
|
def __call__(self, *args): |
|
return args[0] |
|
|
|
def __init__(self): |
|
self.cur_step = 0 |
|
|
|
if controller is None: |
|
controller = DummyController() |
|
|
|
def register_recr(net_, place_in_unet): |
|
if net_.__class__.__name__ == 'CrossAttention': |
|
net_.forward = ca_forward(net_, place_in_unet) |
|
elif hasattr(net_, 'children'): |
|
for net__ in net_.children(): |
|
register_recr(net__, place_in_unet) |
|
|
|
sub_nets = model.named_children() |
|
for net in sub_nets: |
|
if 'input_blocks' in net[0]: |
|
register_recr(net[1], 'down') |
|
elif 'output_blocks' in net[0]: |
|
register_recr(net[1], 'up') |
|
elif 'middle_block' in net[0]: |
|
register_recr(net[1], 'mid') |
|
|
|
|
|
class DDIMVSampler(object): |
|
|
|
def __init__(self, model, schedule='linear', **kwargs): |
|
super().__init__() |
|
self.model = model |
|
self.ddpm_num_timesteps = model.num_timesteps |
|
self.schedule = schedule |
|
|
|
def register_buffer(self, name, attr): |
|
if type(attr) == torch.Tensor: |
|
if attr.device != torch.device(device): |
|
attr = attr.to(torch.device(device)) |
|
setattr(self, name, attr) |
|
|
|
def make_schedule(self, |
|
ddim_num_steps, |
|
ddim_discretize='uniform', |
|
ddim_eta=0., |
|
verbose=True): |
|
self.ddim_timesteps = make_ddim_timesteps( |
|
ddim_discr_method=ddim_discretize, |
|
num_ddim_timesteps=ddim_num_steps, |
|
num_ddpm_timesteps=self.ddpm_num_timesteps, |
|
verbose=verbose) |
|
alphas_cumprod = self.model.alphas_cumprod |
|
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, \ |
|
'alphas have to be defined for each timestep' |
|
|
|
def to_torch(x): |
|
return x.clone().detach().to(torch.float32).to(self.model.device) |
|
|
|
self.register_buffer('betas', to_torch(self.model.betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', |
|
to_torch(self.model.alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', |
|
to_torch(np.sqrt(alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', |
|
to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', |
|
to_torch(np.log(1. - alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', |
|
to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', |
|
to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) |
|
|
|
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = \ |
|
make_ddim_sampling_parameters( |
|
alphacums=alphas_cumprod.cpu(), |
|
ddim_timesteps=self.ddim_timesteps, |
|
eta=ddim_eta, |
|
verbose=verbose) |
|
self.register_buffer('ddim_sigmas', ddim_sigmas) |
|
self.register_buffer('ddim_alphas', ddim_alphas) |
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) |
|
self.register_buffer('ddim_sqrt_one_minus_alphas', |
|
np.sqrt(1. - ddim_alphas)) |
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( |
|
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * |
|
(1 - self.alphas_cumprod / self.alphas_cumprod_prev)) |
|
self.register_buffer('ddim_sigmas_for_original_num_steps', |
|
sigmas_for_original_sampling_steps) |
|
|
|
@torch.no_grad() |
|
def sample(self, |
|
S, |
|
batch_size, |
|
shape, |
|
conditioning=None, |
|
callback=None, |
|
img_callback=None, |
|
quantize_x0=False, |
|
eta=0., |
|
mask=None, |
|
x0=None, |
|
xtrg=None, |
|
noise_rescale=None, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
verbose=True, |
|
x_T=None, |
|
log_every_t=100, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
dynamic_threshold=None, |
|
ucg_schedule=None, |
|
controller=None, |
|
strength=0.0, |
|
**kwargs): |
|
if conditioning is not None: |
|
if isinstance(conditioning, dict): |
|
ctmp = conditioning[list(conditioning.keys())[0]] |
|
while isinstance(ctmp, list): |
|
ctmp = ctmp[0] |
|
cbs = ctmp.shape[0] |
|
if cbs != batch_size: |
|
print(f'Warning: Got {cbs} conditionings' |
|
f'but batch-size is {batch_size}') |
|
|
|
elif isinstance(conditioning, list): |
|
for ctmp in conditioning: |
|
if ctmp.shape[0] != batch_size: |
|
print(f'Warning: Got {cbs} conditionings' |
|
f'but batch-size is {batch_size}') |
|
|
|
else: |
|
if conditioning.shape[0] != batch_size: |
|
print(f'Warning: Got {conditioning.shape[0]}' |
|
f'conditionings but batch-size is {batch_size}') |
|
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) |
|
|
|
C, H, W = shape |
|
size = (batch_size, C, H, W) |
|
print(f'Data shape for DDIM sampling is {size}, eta {eta}') |
|
|
|
samples, intermediates = self.ddim_sampling( |
|
conditioning, |
|
size, |
|
callback=callback, |
|
img_callback=img_callback, |
|
quantize_denoised=quantize_x0, |
|
mask=mask, |
|
x0=x0, |
|
xtrg=xtrg, |
|
noise_rescale=noise_rescale, |
|
ddim_use_original_steps=False, |
|
noise_dropout=noise_dropout, |
|
temperature=temperature, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
x_T=x_T, |
|
log_every_t=log_every_t, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
dynamic_threshold=dynamic_threshold, |
|
ucg_schedule=ucg_schedule, |
|
controller=controller, |
|
strength=strength, |
|
) |
|
return samples, intermediates |
|
|
|
@torch.no_grad() |
|
def ddim_sampling(self, |
|
cond, |
|
shape, |
|
x_T=None, |
|
ddim_use_original_steps=False, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
xtrg=None, |
|
noise_rescale=None, |
|
img_callback=None, |
|
log_every_t=100, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
dynamic_threshold=None, |
|
ucg_schedule=None, |
|
controller=None, |
|
strength=0.0): |
|
|
|
if strength == 1 and x0 is not None: |
|
return x0, None |
|
|
|
register_attention_control(self.model.model.diffusion_model, |
|
controller) |
|
|
|
device = self.model.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
if timesteps is None: |
|
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps \ |
|
else self.ddim_timesteps |
|
elif timesteps is not None and not ddim_use_original_steps: |
|
subset_end = int( |
|
min(timesteps / self.ddim_timesteps.shape[0], 1) * |
|
self.ddim_timesteps.shape[0]) - 1 |
|
timesteps = self.ddim_timesteps[:subset_end] |
|
|
|
intermediates = {'x_inter': [img], 'pred_x0': [img]} |
|
time_range = reversed(range( |
|
0, timesteps)) if ddim_use_original_steps else np.flip(timesteps) |
|
total_steps = timesteps if ddim_use_original_steps \ |
|
else timesteps.shape[0] |
|
print(f'Running DDIM Sampling with {total_steps} timesteps') |
|
|
|
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) |
|
if controller is not None: |
|
controller.set_total_step(total_steps) |
|
if mask is None: |
|
mask = [None] * total_steps |
|
|
|
dir_xt = 0 |
|
for i, step in enumerate(iterator): |
|
if controller is not None: |
|
controller.set_step(i) |
|
index = total_steps - i - 1 |
|
ts = torch.full((b, ), step, device=device, dtype=torch.long) |
|
|
|
if strength >= 0 and i == int( |
|
total_steps * strength) and x0 is not None: |
|
img = self.model.q_sample(x0, ts) |
|
if mask is not None and xtrg is not None: |
|
|
|
if type(mask) == list: |
|
weight = mask[i] |
|
else: |
|
weight = mask |
|
if weight is not None: |
|
rescale = torch.maximum(1. - weight, (1 - weight**2)**0.5 * |
|
controller.inner_strength) |
|
if noise_rescale is not None: |
|
rescale = (1. - weight) * ( |
|
1 - noise_rescale) + rescale * noise_rescale |
|
img_ref = self.model.q_sample(xtrg, ts) |
|
img = img_ref * weight + (1. - weight) * ( |
|
img - dir_xt) + rescale * dir_xt |
|
|
|
if ucg_schedule is not None: |
|
assert len(ucg_schedule) == len(time_range) |
|
unconditional_guidance_scale = ucg_schedule[i] |
|
|
|
outs = self.p_sample_ddim( |
|
img, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=ddim_use_original_steps, |
|
quantize_denoised=quantize_denoised, |
|
temperature=temperature, |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
dynamic_threshold=dynamic_threshold, |
|
controller=controller, |
|
return_dir=True) |
|
img, pred_x0, dir_xt = outs |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(pred_x0, i) |
|
|
|
if index % log_every_t == 0 or index == total_steps - 1: |
|
intermediates['x_inter'].append(img) |
|
intermediates['pred_x0'].append(pred_x0) |
|
|
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_ddim(self, |
|
x, |
|
c, |
|
t, |
|
index, |
|
repeat_noise=False, |
|
use_original_steps=False, |
|
quantize_denoised=False, |
|
temperature=1., |
|
noise_dropout=0., |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
unconditional_guidance_scale=1., |
|
unconditional_conditioning=None, |
|
dynamic_threshold=None, |
|
controller=None, |
|
return_dir=False): |
|
b, *_, device = *x.shape, x.device |
|
|
|
if unconditional_conditioning is None or \ |
|
unconditional_guidance_scale == 1.: |
|
model_output = self.model.apply_model(x, t, c) |
|
else: |
|
model_t = self.model.apply_model(x, t, c) |
|
model_uncond = self.model.apply_model(x, t, |
|
unconditional_conditioning) |
|
model_output = model_uncond + unconditional_guidance_scale * ( |
|
model_t - model_uncond) |
|
|
|
if self.model.parameterization == 'v': |
|
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) |
|
else: |
|
e_t = model_output |
|
|
|
if score_corrector is not None: |
|
assert self.model.parameterization == 'eps', 'not implemented' |
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, |
|
**corrector_kwargs) |
|
|
|
if use_original_steps: |
|
alphas = self.model.alphas_cumprod |
|
alphas_prev = self.model.alphas_cumprod_prev |
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod |
|
sigmas = self.model.ddim_sigmas_for_original_num_steps |
|
else: |
|
alphas = self.ddim_alphas |
|
alphas_prev = self.ddim_alphas_prev |
|
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas |
|
sigmas = self.ddim_sigmas |
|
|
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) |
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) |
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) |
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), |
|
sqrt_one_minus_alphas[index], |
|
device=device) |
|
|
|
|
|
if self.model.parameterization != 'v': |
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() |
|
else: |
|
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) |
|
|
|
if quantize_denoised: |
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) |
|
|
|
if dynamic_threshold is not None: |
|
raise NotImplementedError() |
|
''' |
|
if mask is not None and xtrg is not None: |
|
pred_x0 = xtrg * mask + (1. - mask) * pred_x0 |
|
''' |
|
|
|
if controller is not None: |
|
pred_x0 = controller.update_x0(pred_x0) |
|
|
|
|
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t |
|
noise = sigma_t * noise_like(x.shape, device, |
|
repeat_noise) * temperature |
|
if noise_dropout > 0.: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise |
|
|
|
if return_dir: |
|
return x_prev, pred_x0, dir_xt |
|
return x_prev, pred_x0 |
|
|
|
@torch.no_grad() |
|
def encode(self, |
|
x0, |
|
c, |
|
t_enc, |
|
use_original_steps=False, |
|
return_intermediates=None, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
callback=None): |
|
timesteps = np.arange(self.ddpm_num_timesteps |
|
) if use_original_steps else self.ddim_timesteps |
|
num_reference_steps = timesteps.shape[0] |
|
|
|
assert t_enc <= num_reference_steps |
|
num_steps = t_enc |
|
|
|
if use_original_steps: |
|
alphas_next = self.alphas_cumprod[:num_steps] |
|
alphas = self.alphas_cumprod_prev[:num_steps] |
|
else: |
|
alphas_next = self.ddim_alphas[:num_steps] |
|
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) |
|
|
|
x_next = x0 |
|
intermediates = [] |
|
inter_steps = [] |
|
for i in tqdm(range(num_steps), desc='Encoding Image'): |
|
t = torch.full((x0.shape[0], ), |
|
timesteps[i], |
|
device=self.model.device, |
|
dtype=torch.long) |
|
if unconditional_guidance_scale == 1.: |
|
noise_pred = self.model.apply_model(x_next, t, c) |
|
else: |
|
assert unconditional_conditioning is not None |
|
e_t_uncond, noise_pred = torch.chunk( |
|
self.model.apply_model( |
|
torch.cat((x_next, x_next)), torch.cat((t, t)), |
|
torch.cat((unconditional_conditioning, c))), 2) |
|
noise_pred = e_t_uncond + unconditional_guidance_scale * ( |
|
noise_pred - e_t_uncond) |
|
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next |
|
weighted_noise_pred = alphas_next[i].sqrt() * ( |
|
(1 / alphas_next[i] - 1).sqrt() - |
|
(1 / alphas[i] - 1).sqrt()) * noise_pred |
|
x_next = xt_weighted + weighted_noise_pred |
|
if return_intermediates and i % (num_steps // return_intermediates |
|
) == 0 and i < num_steps - 1: |
|
intermediates.append(x_next) |
|
inter_steps.append(i) |
|
elif return_intermediates and i >= num_steps - 2: |
|
intermediates.append(x_next) |
|
inter_steps.append(i) |
|
if callback: |
|
callback(i) |
|
|
|
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} |
|
if return_intermediates: |
|
out.update({'intermediates': intermediates}) |
|
return x_next, out |
|
|
|
@torch.no_grad() |
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): |
|
|
|
|
|
if use_original_steps: |
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod |
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod |
|
else: |
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) |
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas |
|
|
|
if noise is None: |
|
noise = torch.randn_like(x0) |
|
if t >= len(sqrt_alphas_cumprod): |
|
return noise |
|
return ( |
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + |
|
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * |
|
noise) |
|
|
|
@torch.no_grad() |
|
def decode(self, |
|
x_latent, |
|
cond, |
|
t_start, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
use_original_steps=False, |
|
callback=None): |
|
|
|
timesteps = np.arange(self.ddpm_num_timesteps |
|
) if use_original_steps else self.ddim_timesteps |
|
timesteps = timesteps[:t_start] |
|
|
|
time_range = np.flip(timesteps) |
|
total_steps = timesteps.shape[0] |
|
print(f'Running DDIM Sampling with {total_steps} timesteps') |
|
|
|
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) |
|
x_dec = x_latent |
|
for i, step in enumerate(iterator): |
|
index = total_steps - i - 1 |
|
ts = torch.full((x_latent.shape[0], ), |
|
step, |
|
device=x_latent.device, |
|
dtype=torch.long) |
|
x_dec, _ = self.p_sample_ddim( |
|
x_dec, |
|
cond, |
|
ts, |
|
index=index, |
|
use_original_steps=use_original_steps, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning) |
|
if callback: |
|
callback(i) |
|
return x_dec |
|
|
|
|
|
def calc_mean_std(feat, eps=1e-5): |
|
|
|
size = feat.size() |
|
assert (len(size) == 4) |
|
N, C = size[:2] |
|
feat_var = feat.view(N, C, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(N, C, 1, 1) |
|
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat): |
|
assert (content_feat.size()[:2] == style_feat.size()[:2]) |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
|
|
normalized_feat = (content_feat - |
|
content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|