|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def coords_grid(b, h, w, homogeneous=False, device=None): |
|
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) |
|
|
|
stacks = [x, y] |
|
|
|
if homogeneous: |
|
ones = torch.ones_like(x) |
|
stacks.append(ones) |
|
|
|
grid = torch.stack(stacks, dim=0).float() |
|
|
|
grid = grid[None].repeat(b, 1, 1, 1) |
|
|
|
if device is not None: |
|
grid = grid.to(device) |
|
|
|
return grid |
|
|
|
|
|
def generate_window_grid(h_min, h_max, w_min, w_max, len_h, len_w, device=None): |
|
assert device is not None |
|
|
|
x, y = torch.meshgrid([torch.linspace(w_min, w_max, len_w, device=device), |
|
torch.linspace(h_min, h_max, len_h, device=device)], |
|
) |
|
grid = torch.stack((x, y), -1).transpose(0, 1).float() |
|
|
|
return grid |
|
|
|
|
|
def normalize_coords(coords, h, w): |
|
|
|
c = torch.Tensor([(w - 1) / 2., (h - 1) / 2.]).float().to(coords.device) |
|
return (coords - c) / c |
|
|
|
|
|
def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False): |
|
|
|
|
|
if sample_coords.size(1) != 2: |
|
sample_coords = sample_coords.permute(0, 3, 1, 2) |
|
|
|
b, _, h, w = sample_coords.shape |
|
|
|
|
|
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 |
|
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 |
|
|
|
grid = torch.stack([x_grid, y_grid], dim=-1) |
|
|
|
img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) |
|
|
|
if return_mask: |
|
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) |
|
|
|
return img, mask |
|
|
|
return img |
|
|
|
|
|
def flow_warp(feature, flow, mask=False, padding_mode='zeros'): |
|
b, c, h, w = feature.size() |
|
assert flow.size(1) == 2 |
|
|
|
grid = coords_grid(b, h, w).to(flow.device) + flow |
|
|
|
return bilinear_sample(feature, grid, padding_mode=padding_mode, |
|
return_mask=mask) |
|
|
|
|
|
def forward_backward_consistency_check(fwd_flow, bwd_flow, |
|
alpha=0.01, |
|
beta=0.5 |
|
): |
|
|
|
|
|
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 |
|
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 |
|
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) |
|
|
|
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) |
|
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) |
|
|
|
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) |
|
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) |
|
|
|
threshold = alpha * flow_mag + beta |
|
|
|
fwd_occ = (diff_fwd > threshold).float() |
|
bwd_occ = (diff_bwd > threshold).float() |
|
|
|
return fwd_occ, bwd_occ |
|
|