# generate prediction results for submission on sintel and kitti online servers | |
# GMFlow without refinement | |
# submission to sintel | |
CUDA_VISIBLE_DEVICES=0 python main.py \ | |
--submission \ | |
--output_path submission/sintel-gmflow-norefine \ | |
--val_dataset sintel \ | |
--resume pretrained/gmflow_sintel-0c07dcb3.pth | |
# submission to kitti | |
CUDA_VISIBLE_DEVICES=0 python main.py \ | |
--submission \ | |
--output_path submission/kitti-gmflow-norefine \ | |
--val_dataset kitti \ | |
--resume pretrained/gmflow_kitti-285701a8.pth | |
# you can also visualize the predictions before submission | |
# CUDA_VISIBLE_DEVICES=0 python main.py \ | |
# --submission \ | |
# --output_path submission/sintel-gmflow-norefine-vis \ | |
# --save_vis_flow \ | |
# --no_save_flo \ | |
# --val_dataset sintel \ | |
# --resume pretrained/gmflow_sintel.pth | |
# GMFlow with refinement | |
# submission to sintel | |
CUDA_VISIBLE_DEVICES=0 python main.py \ | |
--submission \ | |
--output_path submission/sintel-gmflow-withrefine \ | |
--val_dataset sintel \ | |
--resume pretrained/gmflow_with_refine_sintel-3ed1cf48.pth \ | |
--padding_factor 32 \ | |
--upsample_factor 4 \ | |
--num_scales 2 \ | |
--attn_splits_list 2 8 \ | |
--corr_radius_list -1 4 \ | |
--prop_radius_list -1 1 | |
# submission to kitti | |
CUDA_VISIBLE_DEVICES=0 python main.py \ | |
--submission \ | |
--output_path submission/kitti-gmflow-withrefine \ | |
--val_dataset kitti \ | |
--resume pretrained/gmflow_with_refine_kitti-8d3b9786.pth \ | |
--padding_factor 32 \ | |
--upsample_factor 4 \ | |
--num_scales 2 \ | |
--attn_splits_list 2 8 \ | |
--corr_radius_list -1 4 \ | |
--prop_radius_list -1 1 | |