|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
|
|
|
|
def make_colorwheel(): |
|
''' |
|
Generates a color wheel for optical flow visualization as presented in: |
|
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) |
|
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
''' |
|
|
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros((ncols, 3)) |
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) |
|
col = col + RY |
|
|
|
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) |
|
colorwheel[col:col + YG, 1] = 255 |
|
col = col + YG |
|
|
|
colorwheel[col:col + GC, 1] = 255 |
|
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) |
|
col = col + GC |
|
|
|
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) |
|
colorwheel[col:col + CB, 2] = 255 |
|
col = col + CB |
|
|
|
colorwheel[col:col + BM, 2] = 255 |
|
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) |
|
col = col + BM |
|
|
|
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) |
|
colorwheel[col:col + MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
def flow_compute_color(u, v, convert_to_bgr=False): |
|
''' |
|
Applies the flow color wheel to (possibly clipped) flow components u and v. |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param u: np.ndarray, input horizontal flow |
|
:param v: np.ndarray, input vertical flow |
|
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB |
|
:return: |
|
''' |
|
|
|
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) |
|
|
|
colorwheel = make_colorwheel() |
|
ncols = colorwheel.shape[0] |
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a + 1) / 2 * (ncols - 1) + 1 |
|
k0 = np.floor(fk).astype(np.int32) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols] = 1 |
|
f = fk - k0 |
|
|
|
for i in range(colorwheel.shape[1]): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0] / 255.0 |
|
col1 = tmp[k1] / 255.0 |
|
col = (1 - f) * col0 + f * col1 |
|
|
|
idx = (rad <= 1) |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
col[~idx] = col[~idx] * 0.75 |
|
|
|
|
|
ch_idx = 2 - i if convert_to_bgr else i |
|
flow_image[:, :, ch_idx] = np.floor(255 * col) |
|
|
|
return flow_image |
|
|
|
|
|
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): |
|
''' |
|
Expects a two dimensional flow image of shape [H,W,2] |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param flow_uv: np.ndarray of shape [H,W,2] |
|
:param clip_flow: float, maximum clipping value for flow |
|
:return: |
|
''' |
|
|
|
assert flow_uv.ndim == 3, 'input flow must have three dimensions' |
|
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' |
|
|
|
if clip_flow is not None: |
|
flow_uv = np.clip(flow_uv, 0, clip_flow) |
|
|
|
u = flow_uv[:, :, 0] |
|
v = flow_uv[:, :, 1] |
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
|
|
epsilon = 1e-5 |
|
u = u / (rad_max + epsilon) |
|
v = v / (rad_max + epsilon) |
|
|
|
return flow_compute_color(u, v, convert_to_bgr) |
|
|
|
|
|
UNKNOWN_FLOW_THRESH = 1e7 |
|
SMALLFLOW = 0.0 |
|
LARGEFLOW = 1e8 |
|
|
|
|
|
def make_color_wheel(): |
|
""" |
|
Generate color wheel according Middlebury color code |
|
:return: Color wheel |
|
""" |
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
|
|
colorwheel = np.zeros([ncols, 3]) |
|
|
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) |
|
col += RY |
|
|
|
|
|
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) |
|
colorwheel[col:col + YG, 1] = 255 |
|
col += YG |
|
|
|
|
|
colorwheel[col:col + GC, 1] = 255 |
|
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) |
|
col += GC |
|
|
|
|
|
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) |
|
colorwheel[col:col + CB, 2] = 255 |
|
col += CB |
|
|
|
|
|
colorwheel[col:col + BM, 2] = 255 |
|
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) |
|
col += + BM |
|
|
|
|
|
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) |
|
colorwheel[col:col + MR, 0] = 255 |
|
|
|
return colorwheel |
|
|
|
|
|
def compute_color(u, v): |
|
""" |
|
compute optical flow color map |
|
:param u: optical flow horizontal map |
|
:param v: optical flow vertical map |
|
:return: optical flow in color code |
|
""" |
|
[h, w] = u.shape |
|
img = np.zeros([h, w, 3]) |
|
nanIdx = np.isnan(u) | np.isnan(v) |
|
u[nanIdx] = 0 |
|
v[nanIdx] = 0 |
|
|
|
colorwheel = make_color_wheel() |
|
ncols = np.size(colorwheel, 0) |
|
|
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
|
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a + 1) / 2 * (ncols - 1) + 1 |
|
|
|
k0 = np.floor(fk).astype(int) |
|
|
|
k1 = k0 + 1 |
|
k1[k1 == ncols + 1] = 1 |
|
f = fk - k0 |
|
|
|
for i in range(0, np.size(colorwheel, 1)): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0 - 1] / 255 |
|
col1 = tmp[k1 - 1] / 255 |
|
col = (1 - f) * col0 + f * col1 |
|
|
|
idx = rad <= 1 |
|
col[idx] = 1 - rad[idx] * (1 - col[idx]) |
|
notidx = np.logical_not(idx) |
|
|
|
col[notidx] *= 0.75 |
|
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) |
|
|
|
return img |
|
|
|
|
|
|
|
def flow_to_image(flow): |
|
""" |
|
Convert flow into middlebury color code image |
|
:param flow: optical flow map |
|
:return: optical flow image in middlebury color |
|
""" |
|
u = flow[:, :, 0] |
|
v = flow[:, :, 1] |
|
|
|
maxu = -999. |
|
maxv = -999. |
|
minu = 999. |
|
minv = 999. |
|
|
|
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) |
|
u[idxUnknow] = 0 |
|
v[idxUnknow] = 0 |
|
|
|
maxu = max(maxu, np.max(u)) |
|
minu = min(minu, np.min(u)) |
|
|
|
maxv = max(maxv, np.max(v)) |
|
minv = min(minv, np.min(v)) |
|
|
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
maxrad = max(-1, np.max(rad)) |
|
|
|
u = u / (maxrad + np.finfo(float).eps) |
|
v = v / (maxrad + np.finfo(float).eps) |
|
|
|
img = compute_color(u, v) |
|
|
|
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) |
|
img[idx] = 0 |
|
|
|
return np.uint8(img) |
|
|
|
|
|
def save_vis_flow_tofile(flow, output_path): |
|
vis_flow = flow_to_image(flow) |
|
from PIL import Image |
|
img = Image.fromarray(vis_flow) |
|
img.save(output_path) |
|
|
|
|
|
def flow_tensor_to_image(flow): |
|
"""Used for tensorboard visualization""" |
|
flow = flow.permute(1, 2, 0) |
|
flow = flow.detach().cpu().numpy() |
|
flow = flow_to_image(flow) |
|
flow = np.transpose(flow, (2, 0, 1)) |
|
|
|
return flow |
|
|