|
import numpy as np
|
|
from PIL import Image
|
|
from os.path import *
|
|
import re
|
|
import cv2
|
|
|
|
TAG_CHAR = np.array([202021.25], np.float32)
|
|
|
|
|
|
def readFlow(fn):
|
|
""" Read .flo file in Middlebury format"""
|
|
|
|
|
|
|
|
|
|
|
|
with open(fn, 'rb') as f:
|
|
magic = np.fromfile(f, np.float32, count=1)
|
|
if 202021.25 != magic:
|
|
print('Magic number incorrect. Invalid .flo file')
|
|
return None
|
|
else:
|
|
w = np.fromfile(f, np.int32, count=1)
|
|
h = np.fromfile(f, np.int32, count=1)
|
|
|
|
data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
|
|
|
|
|
|
return np.resize(data, (int(h), int(w), 2))
|
|
|
|
|
|
def readPFM(file):
|
|
file = open(file, 'rb')
|
|
|
|
color = None
|
|
width = None
|
|
height = None
|
|
scale = None
|
|
endian = None
|
|
|
|
header = file.readline().rstrip()
|
|
if header == b'PF':
|
|
color = True
|
|
elif header == b'Pf':
|
|
color = False
|
|
else:
|
|
raise Exception('Not a PFM file.')
|
|
|
|
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
|
if dim_match:
|
|
width, height = map(int, dim_match.groups())
|
|
else:
|
|
raise Exception('Malformed PFM header.')
|
|
|
|
scale = float(file.readline().rstrip())
|
|
if scale < 0:
|
|
endian = '<'
|
|
scale = -scale
|
|
else:
|
|
endian = '>'
|
|
|
|
data = np.fromfile(file, endian + 'f')
|
|
shape = (height, width, 3) if color else (height, width)
|
|
|
|
data = np.reshape(data, shape)
|
|
data = np.flipud(data)
|
|
return data
|
|
|
|
|
|
def writeFlow(filename, uv, v=None):
|
|
""" Write optical flow to file.
|
|
|
|
If v is None, uv is assumed to contain both u and v channels,
|
|
stacked in depth.
|
|
Original code by Deqing Sun, adapted from Daniel Scharstein.
|
|
"""
|
|
nBands = 2
|
|
|
|
if v is None:
|
|
assert (uv.ndim == 3)
|
|
assert (uv.shape[2] == 2)
|
|
u = uv[:, :, 0]
|
|
v = uv[:, :, 1]
|
|
else:
|
|
u = uv
|
|
|
|
assert (u.shape == v.shape)
|
|
height, width = u.shape
|
|
f = open(filename, 'wb')
|
|
|
|
f.write(TAG_CHAR)
|
|
np.array(width).astype(np.int32).tofile(f)
|
|
np.array(height).astype(np.int32).tofile(f)
|
|
|
|
tmp = np.zeros((height, width * nBands))
|
|
tmp[:, np.arange(width) * 2] = u
|
|
tmp[:, np.arange(width) * 2 + 1] = v
|
|
tmp.astype(np.float32).tofile(f)
|
|
f.close()
|
|
|
|
|
|
def readFlowKITTI(filename):
|
|
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
|
|
flow = flow[:, :, ::-1].astype(np.float32)
|
|
flow, valid = flow[:, :, :2], flow[:, :, 2]
|
|
flow = (flow - 2 ** 15) / 64.0
|
|
return flow, valid
|
|
|
|
|
|
def writeFlowKITTI(filename, uv):
|
|
uv = 64.0 * uv + 2 ** 15
|
|
valid = np.ones([uv.shape[0], uv.shape[1], 1])
|
|
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
|
|
cv2.imwrite(filename, uv[..., ::-1])
|
|
|
|
|
|
def read_gen(file_name, pil=False):
|
|
ext = splitext(file_name)[-1]
|
|
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
|
return Image.open(file_name)
|
|
elif ext == '.bin' or ext == '.raw':
|
|
return np.load(file_name)
|
|
elif ext == '.flo':
|
|
return readFlow(file_name).astype(np.float32)
|
|
elif ext == '.pfm':
|
|
flow = readPFM(file_name).astype(np.float32)
|
|
if len(flow.shape) == 2:
|
|
return flow
|
|
else:
|
|
return flow[:, :, :-1]
|
|
return []
|
|
|