|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
class InputPadder: |
|
""" Pads images such that dimensions are divisible by 8 """ |
|
|
|
def __init__(self, dims, mode='sintel', padding_factor=8): |
|
self.ht, self.wd = dims[-2:] |
|
pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor |
|
pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor |
|
if mode == 'sintel': |
|
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] |
|
else: |
|
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] |
|
|
|
def pad(self, *inputs): |
|
return [F.pad(x, self._pad, mode='replicate') for x in inputs] |
|
|
|
def unpad(self, x): |
|
ht, wd = x.shape[-2:] |
|
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] |
|
return x[..., c[0]:c[1], c[2]:c[3]] |
|
|
|
|
|
def coords_grid(batch, ht, wd, normalize=False): |
|
if normalize: |
|
coords = torch.meshgrid(2 * torch.arange(ht) / (ht - 1) - 1, |
|
2 * torch.arange(wd) / (wd - 1) - 1) |
|
else: |
|
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) |
|
coords = torch.stack(coords[::-1], dim=0).float() |
|
return coords[None].repeat(batch, 1, 1, 1) |
|
|
|
|
|
def compute_out_of_boundary_mask(flow): |
|
|
|
assert flow.dim() == 4 and flow.size(1) == 2 |
|
b, _, h, w = flow.shape |
|
init_coords = coords_grid(b, h, w).to(flow.device) |
|
corres = init_coords + flow |
|
|
|
max_w = w - 1 |
|
max_h = h - 1 |
|
|
|
valid_mask = (corres[:, 0] >= 0) & (corres[:, 0] <= max_w) & (corres[:, 1] >= 0) & (corres[:, 1] <= max_h) |
|
|
|
|
|
flow_mask = (flow[:, 0].abs() <= max_w) & (flow[:, 1].abs() <= max_h) |
|
|
|
valid_mask = valid_mask & flow_mask |
|
|
|
return valid_mask |
|
|
|
|
|
def count_parameters(model): |
|
num = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
return num |
|
|