File size: 25,879 Bytes
946a8d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import uuid
import threading
import asyncio
import json
import re
from datetime import datetime
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langgraph.graph import StateGraph, START, END
import faiss
from sentence_transformers import SentenceTransformer
import pickle
import numpy as np
from tools import extract_json_from_response, apply_filters_partial, rule_based_extract, format_property_data, estateKeywords
import random
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_core.callbacks import StreamingStdOutCallbackHandler, CallbackManager
from langchain_core.callbacks.base import BaseCallbackHandler
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer


class CallbackTextStreamer(TextStreamer):
    def __init__(self, tokenizer, callbacks, skip_prompt=True, skip_special_tokens=True):
        super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens)
        self.callbacks = callbacks

    def on_new_token(self, token: str):
        for callback in self.callbacks:
            callback.on_llm_new_token(token)





class ChatQwen:
    def __init__(self, temperature=0.3, streaming=False, max_new_tokens=512, callbacks=None):
        self.temperature = temperature
        self.streaming = streaming
        self.max_new_tokens = max_new_tokens
        self.callbacks = callbacks
        self.model_name = "Qwen/Qwen2.5-1.5B-Instruct"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name, 
            torch_dtype="auto", 
            device_map="auto"
        )

    def generate_text(self, messages: list) -> str:
        """
        Given a list of messages, create a prompt and generate text using the Qwen model.
        In streaming mode, uses a TextIteratorStreamer and iterates over tokens to call callbacks.
        """
        # Create prompt from messages using the tokenizer's chat template.
        prompt = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.model.device)

        if self.streaming:
            from transformers import TextIteratorStreamer
            from threading import Thread

            # Create the streamer that collects tokens as they are generated.
            streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = dict(
                **model_inputs,
                max_new_tokens=self.max_new_tokens,
                streamer=streamer,
                temperature=self.temperature,
                do_sample=True
            )
            # Run generation in a separate thread so that we can iterate over tokens.
            thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
            thread.start()

            generated_text = ""
            # Iterate over tokens as they arrive.
            for token in streamer:
                generated_text += token
                # Call each callback with the new token.
                if self.callbacks:
                    for callback in self.callbacks:
                        callback.on_llm_new_token(token)
            # In streaming mode you may want to return empty string,
            # but here we return the full text if needed.
            return generated_text
        else:
            outputs = self.model.generate(
                **model_inputs,
                max_new_tokens=self.max_new_tokens,
                temperature=self.temperature,
                do_sample=True
            )
            # Remove the prompt tokens from the output.
            prompt_length = model_inputs.input_ids.shape[-1]
            generated_ids = outputs[0][prompt_length:]
            text_output = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
            return text_output


    def invoke(self, messages: list, config: dict = None) -> AIMessage:
        config = config or {}
        # Use provided callbacks if any, otherwise default to the callbacks in the instance.
        callbacks = config.get("callbacks", self.callbacks)
        original_callbacks = self.callbacks
        self.callbacks = callbacks

        output_text = self.generate_text(messages)
        self.callbacks = original_callbacks

        if self.streaming:
            return AIMessage(content="")
        else:
            return AIMessage(content=output_text)


    def __call__(self, messages: list) -> AIMessage:
        return self.invoke(messages)



class WebSocketStreamingCallbackHandler(BaseCallbackHandler):
    def __init__(self, connection_id: str, loop):
        self.connection_id = connection_id
        self.loop = loop

    def on_llm_new_token(self, token: str, **kwargs):
        asyncio.run_coroutine_threadsafe(
            manager_socket.send_message(self.connection_id, token),
            self.loop
        )


llm = ChatQwen(temperature=0.3, streaming=True, max_new_tokens=512)

index = faiss.read_index("./faiss.index")
with open("./metadata.pkl", "rb") as f:
    docs = pickle.load(f)
st_model = SentenceTransformer('all-MiniLM-L6-v2')


def make_system_prompt(suffix: str) -> str:
    return (
        "You are EstateGuru, a real estate expert created by Abhishek Pathak from SwavishTek. "
        "Your role is to help customers buy properties using the available data. "
        "Only use the provided data—do not make up any information. "
        "The default currency is AED. If a query uses a different currency, convert the amount to AED "
        "(for example, $10k becomes 36726.50 AED and $1 becomes 3.67 AED). "
        "If a customer is interested in a property, wants to buy, or needs to contact an agent or customer care, "
        "instruct them to call +91 8766268285."
        f"\n{suffix}"
    )

general_query_prompt = make_system_prompt(
    "You are EstateGuru, a helpful real estate assistant. Answer the user's query accurately using the available data. "
    "Do not invent any details or go beyond the real estate domain. "
    "If the user shows interest in a property or contacting an agent, ask them to call +91 8766268285."
)

# ------------------------ Tool Definitions ------------------------

@tool
def extract_filters(query: str) -> dict:
    """For extracting filters"""
    # Use a non-streaming ChatQwen for tool use.
    llm_local = ChatQwen(temperature=0.3, streaming=False)
    system = (
        "You are an expert in extracting filters from property-related queries. Your task is to extract and return only the keys explicitly mentioned in the query as a valid JSON object (starting with '{' and ending with '}'). Include only those keys that are directly present in the query.\n\n"
        "The possible keys are:\n"
        "  - 'projectName': The name of the project.\n"
        "  - 'developerName': The developer's name.\n"
        "  - 'relationshipManager': The relationship manager.\n"
        "  - 'propertyAddress': The property address.\n"
        "  - 'surroundingArea': The area or nearby landmarks.\n"
        "  - 'propertyType': The type or configuration of the property.\n"
        "  - 'amenities': Any amenities mentioned.\n"
        "  - 'coveredParking': Parking availability.\n"
        "  - 'petRules': Pet policies.\n"
        "  - 'security': Security details.\n"
        "  - 'occupancyRate': Occupancy information.\n"
        "  - 'constructionImpact': Construction or its impact.\n"
        "  - 'propertySize': Size of the property.\n"
        "  - 'propertyView': View details.\n"
        "  - 'propertyCondition': Condition of the property.\n"
        "  - 'serviceCharges': Service or maintenance charges.\n"
        "  - 'ownershipType': Ownership type.\n"
        "  - 'totalCosts': A cost threshold or cost amount.\n"
        "  - 'paymentPlans': Payment or financing plans.\n"
        "  - 'expectedRentalYield': Expected rental yield.\n"
        "  - 'rentalHistory': Rental history.\n"
        "  - 'shortTermRentals': Short-term rental information.\n"
        "  - 'resalePotential': Resale potential.\n"
        "  - 'uniqueId': A unique identifier.\n\n"
        "Important instructions regarding cost thresholds:\n"
        "  - If the query contains phrases like 'under 10k', 'below 2m', or 'less than 5k', interpret these as cost thresholds.\n"
        "  - Convert any shorthand cost values to pure numbers (for example, '10k' becomes 10000, '2m' becomes 2000000) and assign them to the key 'totalCosts'.\n"
        "  - Do not use 'propertySize' for cost thresholds.\n\n"
        "  - Default currency is AED, if user query have different currency symbol then convert to equivalent AED amount (eg. $10k becomes 36726.50, $1 becomes 3.67).\n\n"
        "Example:\n"
        "  For the query: \"properties near dubai mall under 43k\"\n"
        "  The expected output should be:\n"
        "    { \"surroundingArea\": \"dubai mall\", \"totalCosts\": 43000 }\n\n"
        "Return ONLY a valid JSON object with the extracted keys and their corresponding values, with no additional text."
    )

    human_str = f"Here is the query:\n{query}"
    filter_prompt = [
        {"role": "system", "content": system},
        {"role": "user", "content": human_str},
    ]
    response = llm_local.invoke(messages=filter_prompt)
    response_text = response.content if isinstance(response, AIMessage) else str(response)
    try:
        model_filters = extract_json_from_response(response_text)
    except Exception as e:
        print(f"JSON parsing error: {e}")
        model_filters = {}
    rule_filters = rule_based_extract(query)
    print("Rule-based extraction:", rule_filters)
    final_filters = {**model_filters, **rule_filters}
    print("Final extraction:", final_filters)
    return {"filters": final_filters}


@tool
def determine_route(query: str) -> dict:
    """For determining route using enhanced prompt and fallback logic."""
    # Define a set of keywords that are strong indicators of a real estate query.
    real_estate_keywords = estateKeywords

    # Check if the query includes any of the positive signals.
    pattern = re.compile("|".join(re.escape(keyword) for keyword in real_estate_keywords), re.IGNORECASE)
    positive_signal = bool(pattern.search(query))

    # Proceed with LLM classification regardless, but use the positive signal in fallback.
    llm_local = ChatQwen(temperature=0.3, streaming=False)
    transform_suggest_to_list = query.lower().replace("suggest ", "list ", -1)
    system = """
    Classify the user query as:
    
    - **"search"**: if it requests property listings with specific filters (e.g., location, price, property type like "2bhk", service charges, pet policies, etc.).
    - **"suggest"**: if it asks for property suggestions without filters.
    - **"detail"**: if it is asking for more information about a previously provided property (for example, "tell me more about property 5" or "I want more information regarding 4BHK").
    - **"general"**: for all other real estate-related questions.
    - **"out_of_domain"**: if the query is not related to real estate (for example, tourist attractions, restaurants, etc.).
    
    Keep in mind that queries mentioning terms like "service charge", "allow pets", "pet rules", etc., are considered real estate queries.
    
    Return only the keyword: search, suggest, detail, general, or out_of_domain.
    """
    human_str = f"Here is the query:\n{transform_suggest_to_list}"
    router_prompt = [
        {"role": "system", "content": system},
        {"role": "user", "content": human_str},
    ]
    
    response = llm_local.invoke(messages=router_prompt)
    response_text = response.content if isinstance(response, AIMessage) else str(response)
    route_value = str(response_text).strip().lower()

    # Fallback: if the query seems like a detailed request, override.
    detail_phrases = [
        "more information",
        "tell me more",
        "more details",
        "give me more details",
        "i need more details",
        "can you provide more details",
        "additional details",
        "further information",
        "expand on that",
        "explain further",
        "elaborate more",
        "more specifics",
        "i want to know more",
        "could you elaborate",
        "need more info",
        "provide more details",
        "detail it further",
        "in-depth information",
        "break it down further",
        "further explanation"
    ]
    if any(phrase in query.lower() for phrase in detail_phrases):
        route_value = "detail"

    if route_value not in {"search", "suggest", "detail", "general", "out_of_domain"}:
        route_value = "general"
    if route_value == "out_of_domain" and positive_signal:
        route_value = "general"
    if route_value == "out_of_domain":
        route_value = "general" if positive_signal else "out_of_domain"
        
    return {"route": route_value}



# ------------------------ Workflow Setup ------------------------

workflow = StateGraph(state_schema=dict)

def route_query(state: dict) -> dict:
    new_state = state.copy()
    try:
        new_state["route"] = determine_route.invoke(new_state.get("query", "")).get("route", "general")
        print(new_state["route"])
    except Exception as e:
        print(f"Routing error: {e}")
        new_state["route"] = "general"
    return new_state

def hybrid_extract(state: dict) -> dict:
    new_state = state.copy()
    new_state["filters"] = extract_filters.invoke(new_state.get("query", "")).get("filters", {})
    return new_state

def search_faiss(state: dict) -> dict:
    new_state = state.copy()
    query_embedding = st_model.encode([state["query"]])
    _, indices = index.search(query_embedding.astype(np.float32), 5)
    new_state["faiss_results"] = [docs[idx] for idx in indices[0] if idx < len(docs)]
    return new_state

def apply_filters(state: dict) -> dict:
    new_state = state.copy()
    new_state["final_results"] = apply_filters_partial(state["faiss_results"], state.get("filters", {}))
    return new_state

def suggest_properties(state: dict) -> dict:
    new_state = state.copy()
    new_state["suggestions"] = random.sample(docs, 5)
    return new_state

def handle_out_of_domain(state: dict) -> dict:
    new_state = state.copy()
    new_state["response"] = "I only handle real estate inquiries. Please ask a question related to properties."
    return new_state


def generate_response(state: dict) -> dict:
    new_state = state.copy()
    messages = []
    
    # Add the general query prompt.
    messages.append({"role": "system", "content": general_query_prompt})
    
    # If this is a detail query, add a system message that forces a detailed answer.
    if new_state.get("route", "general") == "detail":
        messages.append({
            "role": "system",
            "content": (
                "This is a detail query. Please provide detailed information about the property below. "
                "Do not generate a new list of properties; only use the provided property details to answer the query. "
                "Focus on answering the specific question (for example, whether pets are allowed)."
            )
        })
        
    # If property details are available, add them without clearing context.
    if new_state.get("current_properties"):
        property_context = format_property_data(new_state["current_properties"])
        messages.append({"role": "system", "content": "Available Property:\n" + property_context})
        # Do NOT clear current_properties here.
        messages.append({"role": "system", "content": "When responding, use only the provided property details to answer the user's specific question about the property."})
    
    # Add the conversation history.
    for msg in state.get("messages", []):
        if msg["role"] == "user":
            messages.append({"role": "user", "content": msg["content"]})
        else:
            messages.append({"role": "assistant", "content": msg["content"]})
    
    # Invoke the LLM with the constructed messages.
    connection_id = state.get("connection_id")
    loop = state.get("loop")
    if connection_id and loop:
        print("Yes")
        callback_manager = [WebSocketStreamingCallbackHandler(connection_id, loop)]
        _ = llm.invoke(
            messages,
            config={"callbacks": callback_manager}
        )
        new_state["response"] = ""
    else:
        callback_manager = [StreamingStdOutCallbackHandler()]
        response = llm.invoke(
            messages,
            config={"callbacks": callback_manager}
        )
        new_state["response"] = response.content if isinstance(response, AIMessage) else str(response)
    
    return new_state

def format_final_response(state: dict) -> dict:
    new_state = state.copy()
    # Only override the current_properties if this is NOT a detail query.
    if not state.get("route", "general") == "detail":
        if state.get("route") in ["search", "suggest"]:
            if "final_results" in state:
                new_state["current_properties"] = state["final_results"]
            elif "suggestions" in state:
                new_state["current_properties"] = state["suggestions"]
    
    # Then format the response based on the (possibly filtered) current_properties.
    if new_state.get("current_properties"):
        formatted = []
        for idx, prop in enumerate(new_state["current_properties"], 1):
            cost = prop.get("totalCosts", "N/A")
            cost_str = f"{cost:,}" if isinstance(cost, (int, float)) else cost
            formatted.append(
                f"{idx}. Type: {prop['propertyType']}, Cost: AED {cost_str}, "
                f"Size: {prop.get('propertySize', 'N/A')}, Amenities: {', '.join(map(str, prop.get('amenities', []))) if prop.get('amenities') else 'N/A'}, "
                f"Rental Yield: {prop.get('expectedRentalYield', 'N/A')}, "
                f"Ownership: {prop.get('ownershipType', 'N/A')}\n"
            )
        aggregated_response = "Here are the property details:\n" + "\n".join(formatted)
        connection_id = state.get("connection_id")
        loop = state.get("loop")
        if connection_id and loop:
            import time
            tokens = aggregated_response.split(" ")
            for token in tokens:
                asyncio.run_coroutine_threadsafe(
                    manager_socket.send_message(connection_id, token + " "),
                    loop
                )
                time.sleep(0.05)
            new_state["response"] = ""
        else:
            new_state["response"] = aggregated_response
    elif "response" in new_state:
        new_state["response"] = str(new_state["response"])
    return new_state



nodes = [
    ("route_query", route_query),
    ("hybrid_extract", hybrid_extract),
    ("faiss_search", search_faiss),
    ("apply_filters", apply_filters),
    ("suggest_properties", suggest_properties),
    ("handle_out_of_domain", handle_out_of_domain),
    ("generate_response", generate_response),
    ("format_response", format_final_response)
]

for name, node in nodes:
    workflow.add_node(name, node)

workflow.add_edge(START, "route_query")
workflow.add_conditional_edges(
    "route_query",
    lambda state: state.get("route", "general"),
    {
        "search": "hybrid_extract", 
        "suggest": "suggest_properties", 
        "detail": "generate_response", 
        "general": "generate_response", 
        "out_of_domain": "handle_out_of_domain"
    }
)
workflow.add_edge("hybrid_extract", "faiss_search")
workflow.add_edge("faiss_search", "apply_filters")
workflow.add_edge("apply_filters", "format_response")
workflow.add_edge("suggest_properties", "format_response")
workflow.add_edge("generate_response", "format_response")
workflow.add_edge("handle_out_of_domain", "format_response")
workflow.add_edge("format_response", END)

workflow_app = workflow.compile()

# ------------------------ Conversation Manager ------------------------

class ConversationManager:
    def __init__(self):
        self.conversation_history = []
        self.current_properties = []

    def _add_message(self, role: str, content: str):
        self.conversation_history.append({
            "role": role,
            "content": content,
            "timestamp": datetime.now().isoformat()
        })

    def process_query(self, query: str) -> str:
        # Reset context on greetings to avoid using off-domain history
        if query.strip().lower() in {"hi", "hello", "hey"}:
            self.conversation_history = []
            self.current_properties = []
            greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
            self._add_message("assistant", greeting_response)
            return greeting_response

        try:
            self._add_message("user", query)
            initial_state = {
                "messages": self.conversation_history.copy(),
                "query": query,
                "route": "general",
                "filters": {},
                "current_properties": self.current_properties
            }
            for event in workflow_app.stream(initial_state, stream_mode="values"):
                final_state = event
            if 'final_results' in final_state:
                self.current_properties = final_state['final_results']
            elif 'suggestions' in final_state:
                self.current_properties = final_state['suggestions']
            if final_state.get("route") == "general":
                response_text = final_state.get("response", "")
                self._add_message("assistant", response_text)
                return response_text
            else:
                response = final_state.get("response", "I couldn't process that request.")
                self._add_message("assistant", response)
                return response
        except Exception as e:
            print(f"Processing error: {e}")
            return "Sorry, I encountered an error processing your request."

conversation_managers = {}

# ------------------------ FastAPI Backend with WebSockets ------------------------

app = FastAPI()

class ConnectionManager:
    def __init__(self):
        self.active_connections = {}

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        connection_id = str(uuid.uuid4())
        self.active_connections[connection_id] = websocket
        print(f"New connection: {connection_id}")
        return connection_id

    def disconnect(self, connection_id: str):
        if connection_id in self.active_connections:
            del self.active_connections[connection_id]
            print(f"Disconnected: {connection_id}")

    async def send_message(self, connection_id: str, message: str):
        websocket = self.active_connections.get(connection_id)
        if websocket:
            await websocket.send_text(message)

manager_socket = ConnectionManager()

def stream_query(query: str, connection_id: str, loop):
    conv_manager = conversation_managers.get(connection_id)
    if conv_manager is None:
        print(f"No conversation manager found for connection {connection_id}")
        return

    # Check for greetings and handle them immediately
    if query.strip().lower() in {"hi", "hello", "hey"}:
        conv_manager.conversation_history = []
        conv_manager.current_properties = []
        greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
        conv_manager._add_message("assistant", greeting_response)
        asyncio.run_coroutine_threadsafe(
            manager_socket.send_message(connection_id, greeting_response),
            loop
        )
        return

    conv_manager._add_message("user", query)
    initial_state = {
        "messages": conv_manager.conversation_history.copy(),
        "query": query,
        "route": "general",
        "filters": {},
        "current_properties": conv_manager.current_properties,
        "connection_id": connection_id,
        "loop": loop
    }
    try:
        workflow_app.invoke(initial_state)
    except Exception as e:
        error_msg = f"Error processing query: {str(e)}"
        asyncio.run_coroutine_threadsafe(
            manager_socket.send_message(connection_id, error_msg),
            loop
        )

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    connection_id = await manager_socket.connect(websocket)
    conversation_managers[connection_id] = ConversationManager()
    try:
        while True:
            query = await websocket.receive_text()
            loop = asyncio.get_event_loop()
            # loop = asyncio.get_running_loop()
            threading.Thread(
                target=stream_query,
                args=(query, connection_id, loop),
                daemon=True
            ).start()
    except WebSocketDisconnect:
        conv_manager = conversation_managers.get(connection_id)
        if conv_manager:
            filename = f"conversations/conversation_{connection_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
            with open(filename, "w") as f:
                json.dump(conv_manager.conversation_history, f, indent=4)
            del conversation_managers[connection_id]
        manager_socket.disconnect(connection_id)

@app.post("/query")
async def post_query(query: str):
    conv_manager = ConversationManager()
    response = conv_manager.process_query(query)
    return {"response": response}